Math, asked by Anonymous, 5 months ago

Questions

=> Let f:R → R be a differentiable function with f(0) = 0 , if y = f(x) satisfies the differential equation dy/dx= (2 + 5y )(5y - 2 ) , Then the value of
 \sf \to \:  \displaystyle \lim _{ \rm \: x \to -  \infty \: } \rm \: f(x) \: is \: 0.4

Answers

Answered by Anonymous
141

Given,

 \sf \:  \dfrac{dy}{dx}  =(2 + 5y)(5y - 2)  \\  \\  \implies \sf \: dx=   \dfrac{dy}{(2 + 5y)(5y - 2)}

Integrating on both sides,

  \implies  \displaystyle \: \sf \int dx =    \int\dfrac{dy}{10y + 25y {}^{2}  - 10y - 4} \\  \\    \implies  \displaystyle \: \sf x  + c=    \int\dfrac{dy}{ {25y}^{2}  - 4}  \\  \\\implies  \displaystyle \: \sf x + c =    \dfrac{1}{25}  \int\dfrac{dy}{ {y}^{2}  - ( \frac{2}{5} ) {}^{2} }

Of the form,

 \star  \: \boxed{ \boxed{ \displaystyle \sf  \int \dfrac{dx}{ {x}^{2}  -  {a}^{2}  }  =  \dfrac{1}{2a} log  \bigg| \dfrac{x - a}{x + a}  \bigg|  + c}}

Thus,

 \implies \sf x  + c=  \dfrac{1}{25}  \times  \dfrac{1}{2 \times  \frac{2}{5} } log \bigg( \dfrac{5y - 2}{5y + 2}  \bigg) \\  \\  \implies \sf x + c =  \dfrac{1}{20} log \bigg( \dfrac{5y - 2}{5y + 2}  \bigg) \\  \\  \implies \sf 20(x + c) =  log \bigg |\dfrac{5y - 2}{5y + 2}  \bigg |

Taking e on both sides,

 \implies \sf e {}^{20x + 20c}  =   \bigg|  \dfrac{5y - 2}{5y + 2}   \bigg|

We know that, f(x) = y and f(0) = 0.

Let C be some constant which is equal to e^20c.

 \implies \sf \: C \times  {e}^{0}  =   \bigg| \dfrac{5(0) - 2}{5(0) + 2} \bigg |  \\  \\  \implies \boxed{ \boxed{ \sf C = 1}}

The equation becomes,

 \implies \sf \:C \times  e {}^{20x}  =   \bigg|  \dfrac{5f(x) - 2}{5f(x) + 2}   \bigg|  \\  \\ \implies \sf e {}^{20x}  =   \bigg|  \dfrac{5f(x) - 2}{5f(x) + 2}   \bigg|

Applying limits on both sides,

 \implies \sf \lim _{ \rm \: x \to - \infty \: }e {}^{20x}  = \lim _{ \rm \: x \to - \infty \: } \bigg|  \dfrac{5f(x) - 2}{5f(x) + 2}   \bigg| \\  \\  \implies \sf \:  {e}^{ -  \infty }  =  \lim _{ \rm \: x \to - \infty \: } \bigg|  \dfrac{5f(x) - 2}{5f(x) + 2}   \bigg| \\  \\ \implies \sf 0 =   \lim _{ \rm \: x \to - \infty \: } (5f(x) - 2) \\  \\ \implies \sf 2 =   \lim _{ \rm \: x \to - \infty \: } 5f(x) \\  \\  \implies \boxed{ \boxed{ \sf  \lim _{ \rm \: x \to - \infty \: } f(x) =  \dfrac{2}{5} }}


BendingReality: Great one!!
BendingReality: Also this is PYQ of Adv. asked in numerical type!
Answered by Asterinn
45

[ Kindly check attached picture for the solution ]

Additional Information :-

\boxed{\boxed{\begin{minipage}{4cm}\displaystyle\circ\sf\:\int{1\:dx}=x+c\\\\\circ\sf\:\int{a\:dx}=ax+c\\\\\circ\sf\:\int{x^n\:dx}=\dfrac{x^{n+1}}{n+1}+c\\\\\circ\sf\:\int{sin\:x\:dx}=-cos\:x+c\\\\\circ\sf\:\int{cos\:x\:dx}=sin\:x+c\\\\\circ\sf\:\int{sec^2x\:dx}=tan\:x+c\\\\\circ\sf\:\int{e^x\:dx}=e^x+c\end{minipage}}}

Learn more :

d(e^x)/dx = e^x

d(x^n)/dx = n x^(n-1)

d(ln x)/dx = 1/x

d(sin x)/dx = cos x

d(cos x)/dx = - sin x

d(tan x)/dx = sec² x

d(sec x)/dx = tan x * sec x

d(cot x)/dx = - cosec²x

d(cosec x)/dx = - cosec x * cot x

Attachments:
Similar questions