r= 6cm, radius at an angle=70
Answers
Answer:
Answer:
\begin{gathered}\tt Given \begin{cases} \sf{Radius \: of \: the \: circle \: is \: 6 \: cm} \\ \sf{Angle \: of \: the \: sector \: is \: 70^{\circ} } \end{cases}\end{gathered}
Given{
Radiusofthecircleis6cm
Angleofthesectoris70
∘
_____________________________
★ To Find :
The area of the sector.
_____________________________
★ Solution :
As, we have to find the area of sector.
We know that,
\Large{\star{\underline{\boxed{\sf{Area \: of \: sector = \frac{\theta}{360}\pi r^2}}}}}⋆
Areaofsector=
360
θ
πr
2
(Putting Values)
\begin{gathered} \sf{area = \frac{70}{360}( \frac{22}{7} \times ( {6)}^{2} ) } \\ \\ \sf{area = \frac{70}{360}( \frac{22}{7} \times 36) } \\ \\ \sf{area = \frac{70}{360}( \frac{792}{7})} \\ \\ \sf{area = \frac{55440}{2520} } \\ \\ \sf{area = 22 \: {cm}^{2} }\end{gathered}
area=
360
70
(
7
22
×(6)
2
)
area=
360
70
(
7
22
×36)
area=
360
70
(
7
792
)
area=
2520
55440
area=22cm
2
\large{\star{\underline{\boxed{\sf{Area = 22 \: cm^2}}}}}⋆
Area=22cm
2
\rule{200}{2}
★ Additional information :
In the question theta can't be negative or greater than 360°.
The area of the sector will be smaller than the area of circle.
\rule{200}{2}
#answerwithquality
#BAL
Step-by-step explanation:
follow