Math, asked by gk883591275, 3 months ago

r= 6cm, radius at an angle=70​

Answers

Answered by myselfdevil5
0

Answer:

Answer:

\begin{gathered}\tt Given \begin{cases} \sf{Radius \: of \: the \: circle \: is \: 6 \: cm} \\ \sf{Angle \: of \: the \: sector \: is \: 70^{\circ} } \end{cases}\end{gathered}

Given{

Radiusofthecircleis6cm

Angleofthesectoris70

_____________________________

★ To Find :

The area of the sector.

_____________________________

★ Solution :

As, we have to find the area of sector.

We know that,

\Large{\star{\underline{\boxed{\sf{Area \: of \: sector = \frac{\theta}{360}\pi r^2}}}}}⋆

Areaofsector=

360

θ

πr

2

(Putting Values)

\begin{gathered} \sf{area = \frac{70}{360}( \frac{22}{7} \times ( {6)}^{2} ) } \\ \\ \sf{area = \frac{70}{360}( \frac{22}{7} \times 36) } \\ \\ \sf{area = \frac{70}{360}( \frac{792}{7})} \\ \\ \sf{area = \frac{55440}{2520} } \\ \\ \sf{area = 22 \: {cm}^{2} }\end{gathered}

area=

360

70

(

7

22

×(6)

2

)

area=

360

70

(

7

22

×36)

area=

360

70

(

7

792

)

area=

2520

55440

area=22cm

2

\large{\star{\underline{\boxed{\sf{Area = 22 \: cm^2}}}}}⋆

Area=22cm

2

\rule{200}{2}

★ Additional information :

In the question theta can't be negative or greater than 360°.

The area of the sector will be smaller than the area of circle.

\rule{200}{2}

#answerwithquality

#BAL

Step-by-step explanation:

follow

Similar questions