Math, asked by vanshikag131, 10 months ago

r×a/r.a differentiate

Answers

Answered by rajivrtp
0

Step-by-step explanation:

(r×a) /( r.a) = ra sinx. n^ / ra cosx = tanx

=> d/dx tanx(n^)

= sec²x( n^)

where n^ is direction vector

hope this helps you

Answered by Swarup1998
17

Differentiation of vector products

To find: differentiate \frac{\vec{r}\times\vec{a}}{\vec{r}.\vec{a}}

Solution:

  • We know that, \vec{r}\times\vec{a}=|\vec{r}||\vec{a}|sin\theta\hat{n} where the two vectors \vec{r} and \vec{a} are inclined at an angle \theta, and \hat{n} is the unit vector orthogonal to both \vec{r} and \vec{a}.

  • Similarly, \vec{r}.\vec{a}=|\vec{r}||\vec{a}|cos\theta where the two vectors \vec{r} and \vec{a} are inclined at an angle \theta.

Now, \frac{\vec{r}\times\vec{a}}{\vec{r}.\vec{a}}

\quad=\frac{|\vec{r}||\vec{a}|sin\theta\hat{n}}{|\vec{r}||\vec{a}|cos\theta}

\quad=tan\theta\hat{n}

We see that, \theta is the variable here and thus we differentiate with respect to \theta

\quad\frac{d}{d\theta}(\frac{\vec{r}\times\vec{a}}{\vec{r}.\vec{a}})=\frac{d}{d\theta}(tan\theta\hat{n})

\Rightarrow \frac{d}{d\theta}(\frac{\vec{r}\times\vec{a}}{\vec{r}.\vec{a}})=\frac{d}{d\theta}(tan\theta)\hat{n}

\Rightarrow \frac{d}{d\theta}(\frac{\vec{r}\times\vec{a}}{\vec{r}.\vec{a}})=sec^{2}\theta\hat{n}

This is the required differentiation.

Similar questions