Math, asked by vs6434727, 9 months ago

R be a relation ob Z defined by R={(a,b):a-b is an integer show that R is an equivalence relation​

Answers

Answered by MaheswariS
0

\textbf{Given:}

R defined on Z by

aRb\;{\iff}\;\text{a-b is an integer}

\textbf{To prove:}

\text{R is an equivalence relation}

\textbf{Solution:}

\text{Let $a{\in}Z$}

\implies\,a-a=0\;\text{which is an integer}

\implies\,aRa

\therefore\,\textbf{R is reflexive}

\text{Let $aRb$}

\implies\,a-b\;\text{is an integer}

\implies\,b-a\;\text{is also an integer}

\implies\,bRa

\therefore\,\textbf{R is symmetric}

\text{Let $aRb$ and $bRc$}

\text{Then,}\;\;a-b=k\;\text{and}\;b-c=l\;\;\text{where k,l are integers}

\text{Adding we get,}

(a-b)+(b-c)=k+l

\implies\,a-c=k+l\;\text{which is an integer}

\implies\,aRc

\therefore\textbf{R is transitive}

\textbf{Hence R is an equivalence relation}

Find more:

show that the relation R defined on the set A={1, 2} as R={(1, 1), (2, 2), (1, 2) } is not symmetric

https://brainly.in/question/19958446

Similar questions