Math, asked by singhneelam14567, 1 year ago

R!/(R-1)! =R
How ¿??

Answers

Answered by AbhijithPrakash
18

Answer:

\displaystyle \frac{\mathrm{R}!}{\left(\mathrm{R}-1\right)!}=\mathrm{R}\quad :\quad \mathrm{True\:for\:all}\:\mathrm{R}

Step-by-step explanation:

\dfrac{\mathrm{R}!}{\left(\mathrm{R}-1\right)!}=\mathrm{R}

\black{\mathrm{Simplify\:}\dfrac{\mathrm{R}!}{\left(\mathrm{R}-1\right)!}:}

\dfrac{\mathrm{R}!}{\left(\mathrm{R}-1\right)!}

\gray{\mathrm{Cancel\:the\:factorials}:\quad \dfrac{n!}{\left(n-r\right)!}=n\cdot \left(n-1\right)\cdots \left(n-r+1\right),\:n>r}

\gray{\dfrac{\mathrm{R}!}{\left(\mathrm{R}-1\right)!}=\mathrm{R}}

=\mathrm{R}

\blue{\mathrm{Both\:sides\:are\:equal}}

\mathrm{True\:for\:all}\:\mathrm{R}

Answered by cakebala
0

Answer:

Step-by-step explanation:

take r=1

=1!(1-1)!

As the rule 0! = 1

1! =1

=1(0)!

=1(1)

1!(1-1)!=1

Hence proved R=R!(R-1)!

Similar questions