Math, asked by vindrasharma4, 5 months ago

*रैखिक समीकरण 2x - 3y + 7 = 0 लिए ऐसा दूसरा समीकरण प्राप्त कीजिए, जिससे समीकरण युग्म समांतर रेखाएँ हों।*

1️⃣ 4x − 6y + 14 = 0
2️⃣ 4x + 6y − 21 = 0
3️⃣ 6x − 9y − 21 = 0
4️⃣ 6x − 9y + 21 = 0​

Answers

Answered by Anonymous
5

Answer:

option 1

Step-by-step explanation:

hope it help you

Answered by amitnrw
1

Given : रैखिक समीकरण 2x-3y+7 = 0

To find : ऐसा दूसरा समीकरण   जिससे समीकरण युग्म समांतर रेखाएँ हों।

4x-6y+14 = 0

4x + 6y - 21 = 0

6x-9y-21 = 0

6x - 9y+21 = 0

Solution:

a₁x + b₁y + c₁ = 0

a₂x + b₂y + c₂ = 0

समीकरण युग्म समांतर रेखाएँ

a₁ /a₂ =  b₁/b₂ ≠ c₁ / c₂

2x-3y+7 = 0

4x-6y+14 = 0

2/4 = -3/-6 = 7/14 = 1/2

2x-3y+7 = 0

4x + 6y - 21 = 0

2/4 ≠  -3/6  ≠ 7/-21  

1/2  ≠ -1/2  ≠ -1/3

2x-3y+7 = 0

6x-9y-21 = 0

2/6  = -3/-9  ≠  7/-21

1/3 = 1/3  ≠ -1/3

समीकरण युग्म समांतर रेखाएँ

2x-3y+7 = 0

6x-9y+21 = 0

2/6  = -3/-9 =  7/21

1/3 = 1/3  =  1/3

6x-9y-21 = 0   दूसरा समीकरण , जिससे समीकरण युग्म समांतर रेखाएँ

Learn more:

A pair of linear equations 111 2 2 2 ax by c ax by c + += + += 0, 0 is ...

brainly.in/question/18461075

If ax2+bx+c and bx2+ax+c have a common factor x+1 then show that ...

brainly.in/question/11220575

Similar questions