Math, asked by SupportiveBoy, 2 days ago

Radha made a picture of an aeroplane with coloured paper as shown. Find the total area of the paper used.

Attachments:

Answers

Answered by SachinGupta01
60

 \sf  \underline{\large{Solution - }}

Area of first region :

➢ In the first region, sides of triangle are given as 5 cm, 5 cm and 1 cm.

 \sf Area \:  of \:  triangle = \sqrt{S(S - a)( S- b)( S- c)}

Where,

➢ S = Semi-perimeter

➢ a, b, c = Sides of triangle

Let us take : a = 5 cm, b = 5 cm, c = 1 cm

 \sf  :  \implies \: S =  \dfrac{a + b + c}{2}

 \sf  :  \implies \: S =  \dfrac{5+ 5 + 1}{2}

 \sf  :  \implies \: S =  \dfrac{11}{2}

Now,

 \sf Area \:  of \:  triangle = \sqrt{S(S - a)( S- b)( S- c)}

 \sf  :  \implies \:  \sqrt{ \dfrac{11}{2}   \bigg(  \dfrac{11}{2} - 5\bigg ) \bigg(  \dfrac{11}{2} - 5\bigg) \bigg(  \dfrac{11}{2} - 1 \bigg)}

 \sf  :  \implies \:  \sqrt{ \dfrac{11}{2}   \bigg(  \dfrac{1}{2} \bigg ) \bigg(  \dfrac{1}{2} \bigg) \bigg(  \dfrac{9}{2}  \bigg)}

 \sf  :  \implies \:  \sqrt{ \dfrac{11 \times 9}{2 \times 2 \times 2 \times 2}  }

 \sf  :  \implies \:  \sqrt{ \dfrac{99}{16}} =  \dfrac{ \sqrt{99} }{ \sqrt{16} }  =  \dfrac{3  \sqrt{11}  }{4}  = \dfrac{3  (3.31)  }{4}  = \dfrac{9.93 }{4} =  \bf2.48 \: cm^{2}

Hence, area of first region = 2.48 cm²

 \quad

Area of second region :

➢ In the second region, a rectangle is given with, Length = 6.5 cm and Breadth = 1 cm.

 \sf Area \:  of \:  rectangle  = Length \times  Breadth

So,

➢ Area of rectangle = 6.5 × 1 = 6.5 cm²

Hence, area of second region = 6.5 cm²

 \quad

Area of third region :

➢ In the third region, a trapezium is given as shown in the attachment.

Area of △ BOC =

 \sf Area \:  of \:  triangle = \sqrt{S(S - a)( S- b)( S- c)}

 \sf  :  \implies \: S =  \dfrac{1 + 1 + 1}{2}

 \sf  :  \implies \: S =    \dfrac{3}{2}

Now,

 \sf Area \:  of \:  triangle = \sqrt{S(S - a)( S- b)( S- c)}

 \sf  :  \implies \:  \sqrt{ \dfrac{3}{2}   \bigg(  \dfrac{3}{2} - 1\bigg ) \bigg(  \dfrac{3}{2} - 1\bigg) \bigg(  \dfrac{3}{2} - 1 \bigg)}

 \sf  :  \implies \:  \sqrt{ \dfrac{3}{2}   \bigg(  \dfrac{1}{2}\bigg ) \bigg(  \dfrac{1}{2}\bigg) \bigg(  \dfrac{1}{2} \bigg)}

 \sf  :  \implies \:  \sqrt{ \dfrac{ 3}{2 \times 2 \times 2 \times 2}  }

 \sf  :  \implies \:  \sqrt{ \dfrac{3}{16}} =  \dfrac{ \sqrt{3} }{ \sqrt{16} }  =  \dfrac{  \sqrt{3}  }{4}  =  \bf0.43 \: cm^{2}

Also,

 \sf  :  \implies \: Area \:  of \:  triangle =   \dfrac{1}{2}  \times Base \times Height

 \sf  :  \implies \: 0.43 =   \dfrac{1}{2}  \times 1 \times Height

 \sf  :  \implies \:  Height \: (h) =  \bf0.866 \: cm

So,

 \sf  :  \implies \: Area \:  of \:  trapezium  =\dfrac{1}{2} \:( sum\:of \: parallel \: sides)\:\times height

 \sf  :  \implies \:  \dfrac{1}{2} \:(1+2)\:\times 0.866

 \sf  :  \implies \:\dfrac{3}{2} \times 0.866

 \sf  :  \implies \:\dfrac{2.598}{2} = \bf 1.299 \: cm^2

Hence, area of third region = 1.299 cm²

 \quad

Area of fourth and fifth region :

➢ Fourth and fifth region are similar right angled triangle.

So, Area of fourth region = Area of fifth region

 \sf  :  \implies \: Area \:  of \:  triangle =   \dfrac{1}{2}  \times Base \times Height

 \sf  :  \implies \:    \dfrac{1}{2}  \times 1.5 \times 6

 \sf  :  \implies \:    3 \times 1.5= \bf 4.5 \: cm ^2

Hence, area of fourth and fifth region = 4.5 cm²

 \quad

Now,

The total area of the paper used :

 \sf  :  \implies \:  Area\: (I) + Area \:(II)+ Area \:(III) +Area \:(IV)+  Area\: (V)

 \sf  :  \implies \:  2.48 + 6.5+ 1.299+4.5+  4.5

 \bf  :  \implies \:  19.279 \: cm^2

Therefore, total area of the paper used = 19.279 cm²

Attachments:

IntrovertLeo: Spectacular!! ^_^
Similar questions