Math, asked by kirtidalvi5, 11 months ago

Radius of a circle is 34 cm and
the distance of the chord from
the centre is 30 cm, find the
length of the chord.​

Answers

Answered by manaskole230305
3

Answer:

32 cm

Step-by-step explanation:

Answered by BRAINLYBOT1020
16

See the attachment \Large\Uparrow \Uparrow \Uparrow \Uparrow

\huge\bold{\mathtt{\purple{✍︎A{\pink{N{\green{S{\blue{W{\red{E{\orange{R✍︎}}}}}}}}}}}}}\huge \Rightarrow

 \Large \bold \red{Solution}\Rightarrow

Let the centre of the circle be O, seg AB be the given chord and seg OM \large \bot chord AB such that A - M - B

OA = 34 cm , OM = 30 cm

In right angled \triangle OMA ,

by Pythagoras' theorem,

\large \Rightarrow OA² = OM² + AM²

\large \Rightarrow 34² = 30² + AM²

\large \Rightarrow 1156 = 900 + AM²

\large \Rightarrow AM² = 1156 - 900

\large \Rightarrow AM² = 256

\large \Rightarrow AM =   \sqrt {256}

\large \Rightarrow AM = 16 cm

Now , the Perpendicular drawn from the centre of the circle to the chord of the circle bisects the chord.

\large \Rightarrow AM= \frac {1}{2}

\large \Rightarrow 16 = \frac {1}{2}

\large \Rightarrow AB = 16×2

\large \Rightarrow AB=32cm

\Large  \bold\blue {Ans}\Longrightarrow

Attachments:
Similar questions