Math, asked by miniprofile2244, 4 months ago

Radius of a cylinder is 2cm and the height is 7cm Its volume is: A. 88cm^2. B. 88cm^3. C. 8.8m^3. D. 0.88cm^3​

Answers

Answered by Anonymous
126

Answer :

›»› The volume of a cylinder is 88 cm³.

Step-by-step explanation :

Given :

  • Radius of a cylinder = 2 cm.
  • Height of a cylinder = 7 cm.

To Find :

  • Volume of a cylinder = ?

Formula required :

Formula to calculate the volume of a cylinder is given by,

Volume of cylinder = πr²h.

Here,

  • The value of π is 22/7.
  • r is the radius of cylinder.
  • h is the height of cylinder.

Units,

  • The unit of volume is cm³.
  • The unit of radius is cm.
  • The unit of height is cm.

Solution :

We know that, if we are given with the radius of a cylinder and height of a cylinder then we have the required formula, that is,

Volume of cylinder = πr²h.

By using the formula to calculate the volume of a cylinder and substituting all the given values in the formula, we get :

→ Volume of cylinder = 22/7 × (2)² × 7

→ Volume of cylinder = 22/7 × 4 × 7

→ Volume of cylinder = 22 × 4 × 1

→ Volume of cylinder = 88 × 1

Volume of cylinder = 88.

Hence, the volume of a cylinder is 88 cm³.

So, option (B) 88 cm³ is correct ✔.

Some related formulae :

  • Volume of cylinder = πr²h.
  • TSA of cylinder = 2πrh + 2πr².
  • Volume of cuboid = l × b × h.
  • CSA of cuboid = 2(l + b)h.
  • TSA of cuboid = 2(lb + bh + lh).
  • CSA of cube = 4a².
  • TSA of cube = 6a².
  • Volume of cube = a³.

Where,

  • The value of π is 22/7 or 3.14.
  • r is the Radius.
  • h is the Height.
  • l is the Length.
  • b is the Breadth.
  • a is the Side.

BrainlyHero420: Perfect
MartialMonk: Fabulous :)
ItzCaptonMack: baby head "-"
Anonymous: Great
Anonymous: Superb, Excellent ✌
Anonymous: Awesome! ♡
MysteriousLadki: Nailed it!
Anonymous: That's called cool answer. ❄️❄️❄️ :shivering:
ItzVelvetRoses: Exquisite! :D
Answered by Anonymous
95

Question -

★ Radius of a cylinder is 2 cm and the height is 7 cm. Its volume is (options are given below) –

  • A. 88cm³

  • B. 88 cm³

  • C. 8.8 m³

  • D. 0.88 cm³

Given that -

⚕️Radius of cylinder = 2 cm

⚕️Height of cylinder = 7 cm

To find -

⚕️Volume of cylinder.

Solution -

⚕️Volume of cylinder = 88 cm³ (Option B)

Using concept -

⚕️Volume of cylinder formula

Using formula -

⚕️Volume of cylinder is given by, πr²h

Where,

⚕️ The value of π is 22/7 or 3.14

⚕️ r denotes radius

⚕️ h denotes height

⚕️ ² means Square

Full solution -

➨ Volume of cylinder = πr²h

➨ Volume of cylinder = 3.14 × (2)² × 7

➨ Volume of cylinder = 3.14 × 4 × 7

➨ Volume of cylinder = 3.14 × 28

➨ Volume of cylinder = 88 cm³

More knowledge -

\; \; \; \; \; \; \;{\sf{\bold{\leadsto TSA \: of \: cube \: = \: 6(side)^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto LSA \: of \: cube \:= \: 4(side)^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Volume \: of \: cube \: = \: (side)^{3}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Diagonal \: of \: cube \: = \: \sqrt(l^{2} + b^{2} + h^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Perimeter \: of \: cube \: = \: 4(l+b+h)}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto TSA \: of \: cuboid \: = \: 2(l \times b + b \times h + l \times h}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto LSA \: of \: cuboid \: = \: 2h(l+b)}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Volume \: of \: cuboid \: = \: L \times B \times H}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Diagonal \: of \: cuboid \: = \: \sqrt 3l}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Perimeter \: of \: cuboid \: = \: 12 \times Sides}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Volume \: of \: cylinder \: = \: \pi r^{2}h}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Surface \: area \: of \: cylinder \: = \: 2 \pi rh + 2 \pi r^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Lateral \: area \: of \: cylinder \: = \: 2 \pi rh}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Base \: area \: of \: cylinder \: = \: \pi r^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Height \: of \: cylinder \: = \: \dfrac{v}{\pi r^{2}}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Radius \: of \: cylinder \: = \:\sqrt frac{v}{\pi h}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Area \: of \: circle = \: \pi r^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Circumference \: of \: circle \: = \: 2 \pi r}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Diameter \: of \: circle \: = \: 2r}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto CSA \: of \: sphere \: = \: 2 \pi r^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto SA \: of \: sphere \: = \: 4 \pi r^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto TSA \: of \: sphere \: = \: 3 \pi r^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Diameter \: of \: circle \: = \: 2r}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Radius \: of \: circle \: = \: \dfrac{d}{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Volume \: of \: sphere \: = \: \dfrac{4}{3} \pi r^{3}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Area \: of \: rectangle \: = \: Length \times Breadth}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Perimeter \: of \: rectangle \: = \:2(length+breadth)}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Perimeter \: of \: square \: = \: 4 \times sides}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Area \: of \: square \: = \: Side \times Side}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Area \: of \: triangle \: = \: \dfrac{1}{2} \times breadth \times height}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Area \: of \: paralloelogram \: = \: Breadth \times Height}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Area \: of \: circle \: = \: \pi b^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Perimeter \: of \: triangle \: = \: (1st \: + \: 2nd \: + 3rd) \: side}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Perimeter \: of \: paralloelogram \: = \: 2(a+b)}}}


Anonymous: That's called cool answer. ❄️❄️❄️ :shivering:
MysteriousLadki: Yeah!
Anonymous: Thanka @Bhoovihirwani ❤️
Anonymous: Thank u so much @MysteriousLadki❤️
Anonymous: @BeBrainliest thank you ❤️
Anonymous: Haye..! Thak uh sis ❤️ @MissPerfect09
ItzCaptonMack: crop cut -"-
Anonymous: Extraordinary !
Anonymous: Thank ya'❤ :)
Similar questions