Physics, asked by Naziyasagir, 10 months ago

Radius of curvature of convex mirror is 40 cm be the image formed on the object placed 30 cm from the mirror

Answers

Answered by chethakbs
2

Answer:

Explanation:

This may help you

All the best

Attachments:
Answered by Anonymous
76

Given:

  • Object Distance (u) = -30cm
  • Radius of curvature (R) = 40cm

To Find:

  • Position of Image?

Formula Used:

 \\ \bigstar{\underline{\boxed{\sf\orange{ Mirror \ Formula = \dfrac{1}{v} + \dfrac{1}{u} = \dfrac{1}{f} }}}} \\ \\ \bigstar{\underline{\boxed{\sf\orange{ Focal \ length (f) = \dfrac{R}{2} }}}} \\

Solution:

Focal length (f) = R/2 = 40/2 => 20cm

After putting the values in the Mirror Formula;

 \colon\implies{\sf{ \dfrac{1}{v} + \dfrac{1}{u} = \dfrac{1}{f} }} \\ \\ \colon\implies{\sf{ \dfrac{1}{v} = \dfrac{1}{f} - \dfrac{1}{u} }} \\ \\ \colon\implies{\sf{ \dfrac{1}{v} = \dfrac{1}{20} - (- \dfrac{1}{30} ) }} \\ \\ \colon\implies{\sf{ \dfrac{1}{v} = \dfrac{1}{20} + \dfrac{1}{30}  }} \\ \\ \colon\implies{\sf{ \dfrac{1}{v} = \dfrac{5}{60} }}  \\

After Reversing Fraction,

 \colon\implies{\sf{ v = \cancel{ \dfrac{60}{5} } }} \\ \\ \colon\implies{\underline{\sf\bold\blue{ v = 12 \ cm }}} \\

Hence,

The Position of an image is 12 cm.

Similar questions