Math, asked by LovepreetChauhan, 9 months ago

radius of curvature of the curve x^2/3 + y^2/3 = a^2/3​

Answers

Answered by pulakmath007
10

SOLUTION

TO DETERMINE

The radius of curvature at any point (x, y) of the curve

  \displaystyle \sf{ {x}^{ \frac{2}{3}  } +  {y}^{ \frac{2}{3} } =  {a}^{ \frac{2}{3} }   }

EVALUATION

Here the given equation of the curve is

  \displaystyle \sf{ {x}^{ \frac{2}{3}  } +  {y}^{ \frac{2}{3} } =  {a}^{ \frac{2}{3} }   }

Differentiating both sides with respect to x we get

  \displaystyle \sf{ \frac{2}{3}  {x}^{  - \frac{1}{3}  } + \frac{2}{3}   {y}^{ -  \frac{1}{3} }y_1 =  0  }

  \displaystyle \sf{ \implies   {x}^{  - \frac{1}{3}  } +    {y}^{ -  \frac{1}{3} }y_1 =  0  } \:  \: ....(1)

  \displaystyle \sf{ \implies y_1 =   -  \frac{ {y}^{ \frac{1}{3} } }{ {x}^{ \frac{1}{3} } }  }

Again Differentiating both sides of Equation (1) with respect to x we get

  \displaystyle \sf{ \implies   -  \frac{1}{3}  {x}^{  - \frac{4}{3}  }  -  \frac{1}{3}    {y}^{ -  \frac{ 4}{3} } {y_1}^{2}  +  {y}^{ -  \frac{1}{3} }y_2  =  0  }

  \displaystyle \sf{ \implies    {y}^{ -  \frac{1}{3} }y_2  =     \frac{1}{3}  {x}^{  - \frac{4}{3}  }   +   \frac{1}{3}    {y}^{ -  \frac{ 4}{3} } {y_1}^{2}  }

  \displaystyle \sf{ \implies    {y}^{ -  \frac{1}{3} }y_2  =     \frac{1}{3}  {x}^{  - \frac{4}{3}  }   +   \frac{1}{3}    {y}^{ -  \frac{ 2}{3} }  {x}^{ -  \frac{2}{3} }  }

  \displaystyle \sf{ \implies    {y}^{ -  \frac{1}{3} }y_2  =    \frac{1}{3}  {x}^{  - \frac{2}{3}  }  \bigg(  {x}^{  - \frac{2}{3}  }   +     {y}^{ -  \frac{ 2}{3}  }  \bigg) }

  \displaystyle \sf{ \implies    {y}^{ -  \frac{1}{3} }y_2  =    \frac{1}{3}  {x}^{  - \frac{2}{3}  }  \bigg(   \frac{{x}^{   \frac{2}{3}  }   +     {y}^{   \frac{ 2}{3}  } }{{x}^{   \frac{2}{3}  }  {y}^{  \frac{ 2}{3}  } }  \bigg) }

  \displaystyle \sf{ \implies    {y}^{ -  \frac{1}{3} }y_2  =    \frac{1}{3}  {x}^{  - \frac{4}{3}  } {y}^{ -  \frac{2}{3} } {a}^{ \frac{2}{3} }  }

  \displaystyle \sf{ \implies   y_2  =    \frac{1}{3}  {x}^{  - \frac{4}{3}  } {y}^{ -  \frac{1}{3} } {a}^{ \frac{2}{3} }  }

So the required radius of curvature at any point (x, y) is

  \displaystyle \sf{ R =  \frac{{(1 +  {y_1}^{2})}^{ \frac{3}{2} }  }{y_2}     }

  \displaystyle \sf{ =  \frac{{ \bigg(1 +   \frac{ {y}^{ \frac{2}{3} } }{ {x}^{ \frac{2}{3} } }  \bigg)}^{ \frac{3}{2} }  }{ \frac{1}{3} {x}^{ -  \frac{4}{3}   }   {y}^{ -  \frac{1}{3}   } {a}^{ \frac{2}{3} }  }     }

  \displaystyle \sf{ =  \frac{{ \bigg( {x}^ \frac{2}{3}  +  {y}^{ \frac{2}{3} }  \:     \bigg)}^{ \frac{3}{2} }  }{ \frac{1}{3} {x}^{ -  \frac{1}{3}   }   {y}^{ -  \frac{1}{3}   } {a}^{ \frac{2}{3} }  }     }

  \displaystyle \sf{ =  \frac{{ \bigg(  {a}^{ \frac{2}{3} }  \:     \bigg)}^{ \frac{3}{2} }  }{ \frac{1}{3} {x}^{ -  \frac{1}{3}   }   {y}^{ -  \frac{1}{3}   } {a}^{ \frac{2}{3} }  }     }

  \displaystyle \sf{ =  \frac{{  a \:      }  }{ \frac{1}{3} {x}^{ -  \frac{1}{3}   }   {y}^{ -  \frac{1}{3}   } {a}^{ \frac{2}{3} }  }     }

  \displaystyle \sf{ = 3 {a}^{ \frac{1}{3}    }  {x}^{ \frac{1}{3} } {y}^{ \frac{1}{3} }  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. find the radius of curvature for the curve xy3=a4 at (a,a)

https://brainly.in/question/22270223

2. Divergence of r / r3 is (a) zero at the origin (b) zero everywhere (c) zero everywhere except the origin (d) nonzero

https://brainly.in/question/22316220

Similar questions