Physics, asked by Aarav231106, 8 months ago

Rahul brings his horse to rest in 1. 5s If the braking force acting, produces a deceleration of
5m/s calculate the initial velocity of the horse in km/hr​

Answers

Answered by harshitrathaur38
0

Answer:

27km/hr

Explanation:

t = 1.5s a = 5m/s

u = at = 5×1.5 = 7.5 m/s

now convet into km/hr

7.5 ×60×60/1000km/hr

Answered by SparklingThunder
1

\huge\purple{ \underline{ \boxed{\mathbb{\red{QUESTION : }}}}}

Rahul brings his horse to rest in 1.5 s . If the braking force acting, produces a deceleration of 5m/s², calculate the initial velocity of the horse in Km/hr.

\huge\purple{ \underline{ \boxed{\mathbb{\red{ANSWER : }}}}}

  • Initial velocity of the horse = 27 km/hr

\huge\purple{ \underline{ \boxed{\mathbb{\red{EXPLANATION : }}}}}

 \green{ \large \underline{ \mathbb{\underline{GIVEN : }}}}

  • Rahul brings his horse to rest in 1.5 s .

  • The braking force acting, produces a deceleration of 5m/s² .

 \green{ \large \underline{ \mathbb{\underline{TO  \: FIND : }}}}

Initial velocity of the horse in Km/hr .

\green{ \large \underline{ \mathbb{\underline{EQUATION  \: OF \:  MOTION\:  USED: }}}}

 \purple{ \longrightarrow \boxed{ \tt v =u + at }}

\green{ \large \underline{ \mathbb{\underline{SOLUTION: }}}}

Final velocity ( v ) = 0  \sf m {s}^{ - 1}

Acceleration ( a ) = - 5  \sf m {s}^{ - 2}

Deceleration means negative acceleration or acceleration in opposite direction .

Time taken ( t ) = 1.5 s

 \displaystyle \bf \implies 0 = u  + ( - 5)1.5 \\  \\  \displaystyle \bf \implies0 = u - 7.5 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \displaystyle \bf \implies u  - 7.5 = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \displaystyle \bf \implies u = 7.5 \: m {s}^{ - 1}  \:  \:  \:  \:  \:

Now , to convert m/s into km/h we will multiply it with 18/5 .

 \displaystyle \bf \implies u = 7.5 \times  \frac{18}{5}  \: km \:  {h}^{ - 1}  \\  \\  \displaystyle \bf \implies u = 1.5 \times 18\: km \:  {h}^{ - 1}  \\  \\ \displaystyle \bf \implies u  = 27\: km \:  {h}^{ - 1}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\green{ \large \underline{ \mathbb{\underline{KNOW\:MORE: }}}}

  \Large{ \purple{\boxed{\begin{array}{l} \textsf{Equation of motion : } \\  \\  \textsf{v = u + at} \\  \\   \displaystyle\textsf{s = ut +  $ \sf\frac{1}{2}a {t}^{2} $ } \\  \\ \sf  {v}^{2} -  {u}^{2}  =  2as \end{array}}}}

Similar questions