Math, asked by abhishekpwan657, 3 months ago

Rahul invests 25,000 annually at the rate of 6% for 3 years in a recurring deposit. How much
amount will he get at the end of 3 years?​

Answers

Answered by Anonymous
44

Given:

  • Principal (p) = 25000
  • Rate (r) = 6%
  • Time (t) = 3 years

 \\

To Find

  • Amount After 3 years

 \\

Solution:

 \\ \circ \: {\underline{\boxed{\tt{ Amount_{(A)} = P \left( 1 + \dfrac{r}{100} \right)^t }}}} \\

Where

  • t = time
  • p = Principal
  • r = Rate

Let the Amount be x

According to Question,

 \colon\implies {\tt{ Amount_{(A)} = 25000 \left( 1 + \dfrac{6}{100} \right)^3 }} \\ \\ \\ \colon\implies {\tt{ x = 25000 \left( \dfrac{53}{50} \right)^3 }} \\ \\ \\ \colon\implies {\tt{ x = 25 \cancel{000}  \times \dfrac{53}{5 \cancel{0} } \times \dfrac{53}{5 \cancel{0} } \times \dfrac{53}{5 \cancel{0} } }} \\ \\ \\ \colon\implies {\tt{ x = 25 \times \cancel{ \dfrac{53}{5} } \times \cancel{ \dfrac{53}{5} } \times \cancel{ \dfrac{53}{5} } }}  \\ \\ \\ \colon\implies {\tt{ x = 25 \times 10.6 \times 10.6 \times 10.6 }} \\ \\ \\ \colon\implies {\boxed{\mathfrak\pink{ x =  29775.4 }}} \\

Hence,

  • The Amount of the Transaction after completing 3 years will be 29775.4 .

____________________________

Similar questions