Math, asked by guddashanu1674, 9 months ago

If z = r( cos theta + i sin theta ) , then value of z/z + z/z is

Answers

Answered by amitnrw
10

Given :  z = r( cosθ + i sin θ )

To Find :  \dfrac{z}{\overline{z}} +\dfrac{\overline{z}}{z}

Solution:

z = r( cosθ + i sin θ )

\overline{z} = r( cosθ -  i sin θ )

\dfrac{z}{\overline{z}} +\dfrac{\overline{z}}{z}  

=  r( cosθ + i sin θ ) /r ( cosθ -  i sin θ )    + r( cosθ -  i sin θ ) /r( cosθ +  i sin θ )

=  ( cosθ + i sin θ ) / ( cosθ -  i sin θ )    +  ( cosθ -  i sin θ ) / ( cosθ +  i sin θ )

=  (  ( cosθ + i sin θ )² + ( cosθ - i sin θ )²) /(cos²θ -  i² sin² θ)

=  (  2( cos²θ + i² sin² θ )) /(cos²θ -  i² sin² θ)

i²  = - 1

=  (  2( cos²θ -  sin² θ )) /(cos²θ +  sin² θ)

cos²θ +  sin² θ = 1

cos²θ -  sin² θ = cos2θ

= 2 cos2θ

\dfrac{z}{\overline{z}} +\dfrac{\overline{z}}{z} = 2 cos2θ

Learn More:

Conjugate of the surd root 3 - root 5 is - Brainly.in

brainly.in/question/8946703

Every real number is a complex number. Proof - Brainly.in

brainly.in/question/18312643

Similar questions