Math, asked by sakinajaorawala44, 6 hours ago

Rahul purchased a two-wheeler for ₹62,000. Its value is depreciating at the rate of 10% p.a. find its value after 2 years. ​

Answers

Answered by Anonymous
70

Given :

  • ➻ Rahul purchased a two wheeler for Rs. 62000 .Its value is deprecating at the rate of 10 % pa.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

To Find :

  • ➻ Value after 2 years.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Solution :

{\pink{❒}}Formula Used :

\large{\color{cyan}{\bigstar}} \: \: {\underline{\boxed{\color{orange}{\sf{ C.I = P \bigg\lgroup 1 + \dfrac{R}{100} \bigg\rgroup^T - P }}}}}

Where :

  • ➵ C.I = Depreciation amount
  • ➵ P = Current cost
  • ➵ R = Depreciation Rate
  • ➵ T = Time

\qquad{━━━━━━━━━━━━━━━━━━━━}

{\pink{❒}}Calculating the Cost after 2 years :

Depreciation :

{:\implies{\qquad{\sf{ C.I= P \bigg\lgroup 1 + \dfrac{R}{100} \bigg\rgroup ^T - P}}}} \\ \\ \ {:\implies{\qquad{\sf{ C.I = 62000 \bigg\lgroup 1 + \dfrac{10}{100} \bigg\rgroup ^2 - 62000}}}} \\ \\ \ {:\implies{\qquad{\sf{ C.I = 62000 \bigg\lgroup  \dfrac{110}{100} \bigg\rgroup ^2 - 62000 }}}} \\ \\ \ {:\implies{\qquad{\sf{ C.I = 62000 \bigg\lgroup  \cancel\dfrac{110}{100} \bigg\rgroup ^2 - 62000 }}}} \\ \\ \ {:\implies{\qquad{\sf{ C.I= 62000 \bigg\lgroup  1.10  \bigg\rgroup ^2 - 62000 }}}} \\ \\ \ {:\implies{\qquad{\sf{ C.I = 62000 \times 1.10 \times 1.10 - 62000}}}} \\ \\ \ {:\implies{\qquad{\sf{ C.I = 62000 \times 1.21 - 62000 }}}} \\ \\ \ {:\implies{\qquad{\sf{ C.I = 75020 - 62000 }}}} \\ \\ \ {\qquad{\sf{Depreciation \: Amount \: = {\blue{\sf{ ₹ \: 13020 }}}}}}

Value after 2 years :

{:\implies{\qquad{\rm{ Cost{\small_{(2 \: years) }} = Current \: cost - Depreciation \: amount }}}} \\ \\ \ {:\implies{\qquad{\rm{ Cost{\small_{(2 \: years) }} = 62000 -  13020}}}} \\ \\ \ {\qquad{\sf{Cost \: after \: 2 \: years \: = {\red{\sf{ ₹ \: 48980  }}}}}}

\qquad{━━━━━━━━━━━━━━━━━━━━}

{\pink{❒}}Therefore :

❝ Cost of two - wheeler after 2 years will be 48980 .❞

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Answered by Anonymous
35

Given :-

  • Current cost of the two - wheeler = Rs. 62,000
  • Rate at which its value is depreciating = 10 % per annum
  • Time = 2 years

To Find :-

  • Its value after 2 years

Formula Used :-

 \bigstar \:  \boxed{ \sf \: A  = P - ( 1 +  \frac{ R}{100} ) ^{T}  - P}

Where,

  • A = its value after 2 years
  • T = Time
  • R = Rate of depreciation
  • P = Current Cost

Solution :-

:  \implies \sf \: A = 62000(1 +  \frac{10}{100})  ^{2} - 62000\:  \\  :  \implies \sf \: A = 62000( \frac{110}{100} ) ^{2} - 62000 \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  :  \implies \sf \: A = 62000 \times 1.1 \times 1.1 - 62000\\  :  \implies \sf \: A = 75020 - 62000\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\\  :  \implies \sf \: A = 13020 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

We know that,

Cost of two wheeler after two years will be current cost - Depreciation amount

 { \sf \orange{\therefore \: cost \:  of  \: two - wheeler_{(2 years)} }=  \pink{Rs. 48980}}

Similar questions