rain appears to be falling at an angle of 370 with vertical to the driver of a car moving with a velocity of 7 m/s. when he increases the velocity of the car to 25 m/s, the rain appear again to fall at an angle 370 with vertical. what is the actual velocity of rain and it's direction with vertical.
Answers
Answered by
27
Heya !
we know tanβ = B sinθ / A + B cosθ
Case 1 :
tan (90 + 37) = v(r) sin θ /7 + v(r) cos θ
- cot 37 = v(r) sin θ / 7 + v(r) cos θ
cot 37 = -v(r) sin θ / 7 = v(r) cos θ __________(1)
Case 2 :
tan (90 - 37 ) = v(r) sin θ / 25 + v(r) cos θ
cot 37 = v(r) sin θ / 25 + v(r) cos θ _________(2)
From (1) and (2)
-v(r) sin θ / 7 + v(r) cos θ = v(r) sin θ / 25 + v(r) cos θ
v(r) cos θ = -16 _______________________(3)
Putting the value of (3) in (1)
v(r) sin θ = 12 ________________________(4)
from (3)² + (4) ²
[ v(r) ]² = 400 {sin ² θ + cos ² θ = 1 }
v(r) = 20 m/s _________________________(5)
Putting the value of (5) into (3)
cos θ = -4/5
θ = 90 + 37 = 127
v(r) = 20 m/s
direction with vertical is 37°
we know tanβ = B sinθ / A + B cosθ
Case 1 :
tan (90 + 37) = v(r) sin θ /7 + v(r) cos θ
- cot 37 = v(r) sin θ / 7 + v(r) cos θ
cot 37 = -v(r) sin θ / 7 = v(r) cos θ __________(1)
Case 2 :
tan (90 - 37 ) = v(r) sin θ / 25 + v(r) cos θ
cot 37 = v(r) sin θ / 25 + v(r) cos θ _________(2)
From (1) and (2)
-v(r) sin θ / 7 + v(r) cos θ = v(r) sin θ / 25 + v(r) cos θ
v(r) cos θ = -16 _______________________(3)
Putting the value of (3) in (1)
v(r) sin θ = 12 ________________________(4)
from (3)² + (4) ²
[ v(r) ]² = 400 {sin ² θ + cos ² θ = 1 }
v(r) = 20 m/s _________________________(5)
Putting the value of (5) into (3)
cos θ = -4/5
θ = 90 + 37 = 127
v(r) = 20 m/s
direction with vertical is 37°
Answered by
30
Hope it helps
Thumbs up!
Attachments:
Similar questions