Math, asked by pandeyanuwarshika, 10 months ago

raitionlize the denominator of the following
3/√3+√5-√2​

Answers

Answered by tahseen619
4

To Rationalize:

\dfrac{3}{ \sqrt{3} +  \sqrt{5} -  \sqrt{2}}

Solution:

  = \dfrac{3}{ \sqrt{3} +  \sqrt{5} -  \sqrt{2}}  \\  \\   = \frac{3}{ \sqrt{3}  -  \sqrt{2} + \sqrt{5}  }  \\  \\  =   \frac{3}{ \sqrt{3}  -  \sqrt{2} + \sqrt{5}} \times  \frac{ \sqrt{3} -  \sqrt{2}  -  \sqrt{5}}{\sqrt{3} -  \sqrt{2}  -  \sqrt{5} }\\ \\    =  \frac{3(\sqrt{3} -  \sqrt{2}  -  \sqrt{5})}{ {( \sqrt{3}  -  \sqrt{2})}^{2}  -  {( \sqrt{5})}^{2} }  \\  \\  =  \frac{3(\sqrt{3} -  \sqrt{2}  -  \sqrt{5})}{ 3  - 2. \sqrt{3}. \sqrt{2}  + 2 - 5} \\  \\  = \frac{3(\sqrt{3} -  \sqrt{2}  -  \sqrt{5})}{5 - 5 - 2\sqrt{6} } \\  \\ =   \boxed{ - \frac{3( \sqrt{3} -  \sqrt{2} -  \sqrt{5})}{2 \sqrt{6} } }

Algebra Formula Used

a² - b² = (a+b)(a-b)

(a - b)² = a² - 2ab + b²

Extra Information

Rationalizing the denominator is a process by which we can write the irrational denominator in the form of Rational no.

For Rationalizing we use a Conjugate surds or Rationalizing factor which is a factor of the irrational denominator.

e.g conjugate surd of √a is √a and the conjugate surds √a - b is √a + b.

Similar questions