Math, asked by s15126dantra17671, 2 months ago

Rajeev invested 750000 in a fund which gives a 16% annual interest rate. In how many years will this sum become 70000?​

Answers

Answered by Anonymous
43

\rm\red{Given:-}

  • Invested = 750000

  • Annual interest = 16%

\rm\red{find:-}

  • How many years will this sum become 70000?

\rm\red{Solution:-}

First,

\rm\dashrightarrow{1 \: year = 120000}

\rm\dashrightarrow{2 \: year = 240000}

\rm\dashrightarrow{3 \: year = 360000}

\rm\dashrightarrow{4 \: year = 480000}

\rm\dashrightarrow{5 \: year = 600000}

\rm\longmapsto{ When  \: will \:  we  \: receive \:  700000 \: ?}

  • Interest received in 1 year = 120000.

  • Interest received in 1 months = 10000

\rm\longmapsto{( Total \:  interest  \: 5 )+  \: (Received \:  in  \: 10  \: months)}

  • 600000 + ( 10,000 × 10 )

  • 600000 + ( 1,00,000)

  • 7,00,000

So, the total interest in 5 year 10 months is 7,00,000.

Learn more :

\begin{gathered}\end{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\small\bf\dag \: {\underline{More \: Formulae}} \\ \small\boxed{ \begin{array}{cc} \bigstar \: \sf{Gain = S.P - C.P} \\ \\ \bigstar \:\sf{Loss = C.P - S.P} \\ \\ \bigstar \: \sf{Gain \: \% = \Bigg( \dfrac{Gain}{C.P} \times 100 \Bigg)\%} \\ \\ \bigstar \: \sf{loss \: \% = \Bigg( \dfrac{loss}{C.P} \times 100 \Bigg)\%} \\ \\ \bigstar \: \sf{S.P = \dfrac{100+Gain\%}{100} \times C.P} \\ \\ \bigstar \: \sf{ C.P =\dfrac{100}{100+Gain\%} \times S.P} \\ \\\bigstar \: \sf{ S.P = \dfrac{100 - loss\%}{100} \times C.P} \\ \\ \bigstar \: \sf{ C.P =\dfrac{100}{100 - loss\%} \times S.P}\end{array} }\end{gathered}\end{gathered}\end{gathered}\end{gathered}

@Shivam

Similar questions