Math, asked by ekta9118758844, 11 months ago

Ramesh has a kite. the figure shows his kite with the corners marked as ABCD . where angle ABD=60° angle DAB = 90° AB =BC and AD=CD given that the area of the kite is 25
 \sqrt{}
3 sq (1) the length of ab and ad (2) the perimeter of the kite ​

Attachments:

Answers

Answered by Anonymous
9

1) the length of ab and ad (2) the perimeter of the kite ​ is solved in the picture attached.

Attachments:
Answered by dheerajk1912
3

\mathbf{AB=5,AD =5\sqrt{3}, \ Perimeter =10(1+\sqrt{3})}

Step-by-step explanation:

  • Given data

        ABCD is a kite

       AB=BC

       AD=CD

      \mathbf{\angle DAB=90^{\circ}}

      \mathbf{\angle DCB=90^{\circ}}

      \mathbf{\textrm{Area of kite ABCD}=25\sqrt{3}}

  • Here from figure, it is clear that \mathbf{\Delta ABD \ and \Delta BDC} is a right angle triangle.

        We know area of right angle triangle

        \mathbf{Area =\frac{1}{2}\times (Base\times Altitude)}

       So

       \mathbf{Area \ of \Delta ABD =\frac{1}{2}\times (AD\times AB)}       ...1)

       Similarly

       \mathbf{Area \ of \Delta BDC =\frac{1}{2}\times (CD\times BC)}

       But DC= AB and CB = AB

       So we can write

      \mathbf{Area \ of \Delta BDC =\frac{1}{2}\times (AD\times AB)}   ...2)

  • Now

      \mathbf{Area \ of \Delta ABD +Area \ of \Delta BDC =Area \ of \ ABCD}

      \mathbf{\frac{1}{2}\times (AD\times AB)+\frac{1}{2}\times (AD\times AB)=25\sqrt{3}}

      Means

      \mathbf{AD\times AB=25\sqrt{3}}       ...3)

  • Here BD bisect the \mathbf{\angle ADC}

       So

       \mathbf{\angle ADB=30^{\circ}}      ...4)

       From

       \mathbf{\tan 30=\frac{AB}{AD}}

       \mathbf{\frac{1}{\sqrt{3}}=\frac{AB}{AD}}

       So

      \mathbf{AB=\frac{AD}{\sqrt{3}}}          ...5)

  • From equation 3) and equation 5), We get

        \mathbf{\frac{AD}{\sqrt{3}}\times AD=25\sqrt{3}}

       On solving ,we get

       \mathbf{AD=5\sqrt{3}}       ...6)

       From equation 5) and equation 6)

      \mathbf{AB=\frac{AD}{\sqrt{3}}=\frac{5\sqrt{3}}{\sqrt{3}}=5}    ...7)

  • Now Perimeter of ABCD

       Perimeter = AB +BC+ CD+ DA

       \mathbf{Perimeter=5+5\sqrt{3}+5+5\sqrt{3}=10+10\sqrt{3}=10(1+\sqrt{3})}

Similar questions