Math, asked by ppradumn8, 7 months ago

Range of f (x) = 1/(1-2 cos ⁡x )is *


Answers

Answered by sathyamargerate0410
2

Answer:

æ.......I represent this as infinity

If a>b then 1/a<1/b

Step-by-step explanation:

Range of cosx[-1,1]

So, -1≤cosx≤1

-2≤-2cosx≤2

1-2≤1-2cosx≤1+2

-1≤1-2cosx≤3

-1≤1-2cosx<0. 0≤1-2cosx≤3

1/-1≥1/(1-2cosx)>1/0. 1/0≥1/(1-2cosx)≥1/3

-1≥1/(1-2cosx)>æ. æ≥1/(1-2cosx)≥1/3

x€(-æ,-1]u[1/3,æ)

Answered by shadowsabers03
10

Let,

\longrightarrow y=\dfrac{1}{1-2\cos x}

\longrightarrow 1-2\cos x=\dfrac{1}{y}

\longrightarrow 2\cos x=1-\dfrac{1}{y}

\longrightarrow 2\cos x=\dfrac{y-1}{y}

\longrightarrow \cos x=\dfrac{y-1}{2y}\quad\quad\dots(1)

We know the range of \cos x.

\longrightarrow \cos x\in[-1,\ 1]

From (1),

\longrightarrow\dfrac{y-1}{2y}\in\left[-1,\ 1]

Multiply by 2.

\longrightarrow\dfrac{y-1}{y}\in\left[-2,\ 2]

\longrightarrow1-\dfrac{1}{y}\in\left[-2,\ 2]

Subtract 1.

\longrightarrow-\dfrac{1}{y}\in\left[-3,\ 1]

Multiply by -1. [Note the interval limit change]

\longrightarrow\dfrac{1}{y}\in\left[-1,\ 3]

Or,

\longrightarrow\dfrac{1}{y}\in\left[-1,\ 0]\cup[0,\ 3]

Take the reciprocal. [Note the interval limit change]

\longrightarrow y\in\left(\dfrac{1}{0},\ \dfrac{1}{-1}\right]\cup\left[\dfrac{1}{3},\ \dfrac{1}{0}\right)

\longrightarrow \underline{\underline{f(x)\in\left(-\infty,\ -1\right]\cup\left[\dfrac{1}{3},\ \infty\right)}}

This is the range of our function.

Similar questions