Math, asked by mdiqubal3, 2 months ago

Range of the function y = (sin x +1) is​

Answers

Answered by mathdude500
2

\large\underline\blue{\bold{Given \:  Question   }}

\tt \:  y  \: =  \: sinx \:  +  \: 1

\large\underline\blue{\bold{To \:  Find :-  }}

\tt \:Range \: of \: y

\large\underline\blue{\bold{Solution :-  }}

We know,

:\implies \tt \:   - 1 \leqslant sinx \leqslant 1

On adding 1 in each term, we get

:\implies \tt \:  1 - 1 \leqslant sinx + 1 \leqslant 1 + 1

:\implies \tt \:  0 \leqslant sinx + 1 \leqslant 2

:\implies \tt \:  0 \leqslant y \leqslant 2

Hence,

:\implies  \boxed{ \pink{\tt \:  Range \:  of \:  y  \:  \in \: [0,  \: 2]}}

Answered by BrainlyKingdom
2

Function range definition : The set of values of the dependent variable for which a function is defined

  • \mathrm{The\:range\:of\:the\:basic}\:\sin \mathrm{function\:is}\:-1\le \sin \left(x\right)\le \:1
  • \mathrm{Add\:to\:the\:edges\:of\:the\:range:}\:1

\to0\le \sin \left(x\right)+1\le \:2

  • \mathrm{Therefore\:the\:range\:is}

\to0\le \:f\left(x\right)\le \:2

\boxed{\therefore\:\mathrm{Range\:of\:}\sin \left(x\right)+1:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:0\le \:f\left(x\right)\le \:2\:\\ \:\mathrm{Interval\:Notation:}&\:\left[0,\:2\right]\end{bmatrix}}

Similar questions