Math, asked by surbhibaheti, 7 months ago

Rarionalse the denominator of
 \frac{5 + 2 \sqrt{3} }{5 - 2 \sqrt{3} }

Answers

Answered by utsav96
1
Pls mark as brainliest answer
Attachments:
Answered by EthicalElite
54

Answer:-

 \sf \frac{5 + \sqrt{3} }{5 - 2 \sqrt{3} }

 \sf By \: Rationalisation:-

 \sf \frac{5 + 2 \sqrt{3} }{5 - 2 \sqrt{3} }  \times  \frac{5 + 2 \sqrt{3} }{5 + 2 \sqrt{3} }

 \sf \frac{(5 + 2 \sqrt{3})^{2}  }{(5 - 2 \sqrt{3})(5 + 2 \sqrt{3})  }

 \sf \frac{(5)^{2}  + (2 \sqrt{3})^{2} + 2 \times 5 \times 2 \sqrt{3}   }{(5)^{2}  - (2 \sqrt{3})^{2}  }

 \sf \frac{25 + 4 \times 3 + 20 \sqrt{3} }{25  - 4 \times  3 }

 \sf \frac{25 + 12 + 20 \sqrt{3} }{25 - 12}

 \sf \frac{37 + 20 \sqrt{3} }{13}

 \sf \boxed {\frac{37 + 20 \sqrt{3} }{13}}

 \sf \red {Therefore, \: answer \: is \: \frac{37 + 20 \sqrt{3} }{13}}

Similar questions