Math, asked by varunsharma0416, 8 months ago

Ratio of sum of n terms of two A.P.'s is 7n + 1 :4n + 27. Find ratio of their m'th
terms.​


please give answer fast

Answers

Answered by feminsarajames4
1

Answer:

Let a  

1

​  

, a  

2

​  

 be the first terms and d  

1

​  

, d  

2

​  

 the common differences of the two given A.P.'s. Then, the sums of their n terms are given by

S  

n

​  

=  

2

n

​  

[2a  

1

​  

+(n−1)d  

1

​  

]

And,

S  

n

​  

 

=  

2

n

​  

[2a  

2

​  

+(n−1)d  

2

​  

]

Therefore,

S  

n

​  

 

 

S  

n

​  

 

​  

=  

2

n

​  

[2a  

2

​  

+(n−1)d  

2

​  

]

2

n

​  

[2a  

1

​  

+(n−1)d  

1

​  

]

​  

=  

2a  

2

​  

+(n−1)d  

2

​  

 

2a  

1

​  

+(n−1)d  

1

​  

 

​  

 

It is given that

S  

n

​  

 

 

S  

n

​  

 

​  

=  

4n+27

7n+1

​  

 

⟹  

2a  

2

​  

+(n−1)d  

2

​  

 

2a  

1

​  

+(n−1)d  

1

​  

 

​  

=  

4n+27

7n+1

​  

     ....(1)

To find the ratio of the mth terms of the two given AP's, we replace n by (2m-1) in equation 1.

Therefore,

2a  

2

​  

+(2m−2)d  

2

​  

 

2a  

1

​  

+(2m−2)d  

1

​  

 

​  

=  

4(2m−1)+27

7(2m−1)+1

​  

 

⟹  

a  

2

​  

+(m−1)d  

2

​  

 

a  

1

​  

+(m−1)d  

1  

=  

8m+23

14m−6

​  

 

Hence, the ratio of the mth terms of two AP's is (14m−6):(8m+23).

Answered by amansharma264
2

Answer:

please Mark as brilliant answer

Attachments:
Similar questions
Art, 11 months ago