Math, asked by Momomaringa, 11 months ago

Rationale the denominator and simplify 1+√2/3-2√2

Answers

Answered by Hiteshbehera74
5

 \frac{ 1 + \sqrt{2} }{3 - 2 \sqrt{2} }  \\  =  \frac{(1 + \sqrt{2} )(3 +  2 \sqrt{2} )}{(3 + 2 \sqrt{2} )(3 + 2 \sqrt{2} )}  \\  =  \frac{3 + 2 \sqrt{2} +3 \sqrt{2}  + 4 }{ {(3)}^{2}  + {(2 \sqrt{2} )}^{2} }  \\  =  \frac{ 7 + 5\sqrt{2} }{9 - 8}  =  7+  5\sqrt{2}

Answered by Anonymous
56

\huge\underline\mathfrak{Answer-}

\huge\leadsto \huge\sf\red{7 + 5 \sqrt{2}}

\huge\underline\mathfrak{Explanation-}

\leadsto \sf\dfrac{1 +  \sqrt{2} }{3 -  2\sqrt{2} }

By Rationalising the denominator,

\leadsto \sf\dfrac{1 +  \sqrt{2} }{3 -  2\sqrt{2} }  \times  \dfrac{3 +  2\sqrt{2} }{3 +  2\sqrt{2} }

\leadsto \sf\dfrac{(1 +  {\sqrt{2} })(3 +  2\sqrt{2}) }{(3 + 2 \sqrt{2})(3 - 2 \sqrt{2}  )}

By using,

(a+b)(a-b) = -

\leadsto \sf\dfrac{1(3 + 2 \sqrt{2} ) +  \sqrt{2}(3 + 2 \sqrt{2} )}{ ({3})^{2} -  ({2 \sqrt{2} })^{2}  }

\leadsto \sf\dfrac{3 + 2 \sqrt{2} + 3 \sqrt{2}  + 2 \times 2 }{9 - (4 \times 2)}

\leadsto \sf\dfrac{3 + 4 + 5 \sqrt{2} }{9 - 8}

\leadsto \sf\dfrac{7 + 5 \sqrt{2} }{1}

\leadsto \huge\sf\red{7 + 5 \sqrt{2}} ( required answer )

Similar questions