Math, asked by mraahanbhujel92002, 3 months ago

Rationaline the denominater and
Simplify​

Attachments:

Answers

Answered by vipashyana1
1

Answer:

 \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5} -  \sqrt{3 }}  +  \frac{ \sqrt{5}  -  \sqrt{3} }{ \sqrt{5}  +  \sqrt{3} }   = 8

Step-by-step explanation:

 \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5} -  \sqrt{3 }}  +  \frac{ \sqrt{5}  -  \sqrt{3} }{ \sqrt{5}  +  \sqrt{3} }  \\  =  \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5}  -  \sqrt{3} }  \times  \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5} +  \sqrt{3}  }  +  \frac{ \sqrt{5}  -  \sqrt{3} }{ \sqrt{5}  +  \sqrt{3} }  \times  \frac{ \sqrt{5} -  \sqrt{3}  }{ \sqrt{5} -  \sqrt{3}  }  \\  =  \frac{ {( \sqrt{5}  +  \sqrt{3} )}^{2} }{ {( \sqrt{5})  }^{2}  -  { (\sqrt{3}) }^{2} }  + \frac{ {( \sqrt{5}   -   \sqrt{3} )}^{2} }{ {( \sqrt{5})  }^{2}  -  { (\sqrt{3}) }^{2} } \\  =  \frac{ {( \sqrt{5} )}^{2}   +  {( \sqrt{3} )}^{2}  + 2( \sqrt{5})( \sqrt{3})  }{5 - 3}  + \frac{ {( \sqrt{5} )}^{2}   +  {( \sqrt{3} )}^{2}   -  2( \sqrt{5})( \sqrt{3})  }{5 - 3} \\  =  \frac{5  + 3 + 2 \sqrt{15} }{5 - 3}  +  \frac{5  + 3 - 2 \sqrt{15} }{5 - 3}  \\  =  \frac{8 + 2 \sqrt{15} }{2}  +  \frac{8 - 2 \sqrt{15} }{2}  \\  =  \frac{8 + 2 \sqrt{15}  + 8 - 2 \sqrt{15} }{2}  \\  =  \frac{8 + 8 + 2 \sqrt{15 }  - 2 \sqrt{15} }{2}  \\  =  \frac{16}{2}  \\  = 8

Similar questions