rationalise 1/√7-√6
Answers
Answered by
0
Step-by-step explanation:
Answer:
\frac{1}{\sqrt{7}- \sqrt{6}}
7
−
6
1
= (\sqrt{7}+\sqrt{6})(
7
+
6
)
Step-by-step explanation:
Given \frac{1}{\sqrt{7}- \sqrt{6}}
7
−
6
1
Multiply numerator and denominator by (√7+√6), we get
= \frac{(\sqrt{7}+\sqrt{6})} {(\sqrt{7}-\sqrt{6})(\sqrt{7}+\sqrt{6})}
(
7
−
6
)(
7
+
6
)
(
7
+
6
)
\* By algebraic identity:
(a+b)(a-b) = a²-b²
= \frac{(\sqrt{7}+\sqrt{6})}{(\sqrt{7})^{2}-(\sqrt{6})^{2}}
(
7
)
2
−(
6
)
2
(
7
+
6
)
= \frac{(\sqrt{7}+\sqrt{6})}{7-6}
7−6
(
7
+
6
)
= (\sqrt{7}+\sqrt{6})(
7
+
6
)
Therefore,
\frac{1}{\sqrt{7}- \sqrt{6}}
7
−
6
1
= (\sqrt{7}+\sqrt{6})(
7
+
6
)
Similar questions