rationalise
1) root6/root2 +root 3
Answers
Now,
On rationalizing the denominator we get,
Identity used :
(a + b)(a - b) = {a}^{2} - {b}^{2}(a+b)(a−b)=a
2
−b
2
Now,
\begin{lgathered}\frac{ \sqrt{6} }{ \sqrt{2} + \sqrt{3} } \\\end{lgathered}
2
+
3
6
On rationalizing the denominator we get,
\begin{lgathered}= \frac{ \sqrt{6} }{ \sqrt{2} + \sqrt{3} } \times \frac{ \sqrt{2} - \sqrt{3} }{ \sqrt{2} - \sqrt{3} } \\ \\ = \frac{ \sqrt{6} ( \sqrt{2} - \sqrt{3} )}{ {( \sqrt{2}) }^{2} - {( \sqrt{3} )}^{2} } \\ \\ = \frac{ \sqrt{12} + \sqrt{18} }{2 - 3} \\ \\ = \frac{ \sqrt{2 \times 2 \times 3} + \sqrt{3 \times 3 \times 2} }{ - 1} \\ \\ = - ( \sqrt{ {2}^{2} \times 3} + \sqrt{ {3}^{2} \times 2 } ) \\ \\ = - (2 \sqrt{3} + 3 \sqrt{2} ) \\ \\ = - 2 \sqrt{3} - 3 \sqrt{2}\end{lgathered}
=
2
+
3
6
×
2
−
3
2
−
3
=
(
2
)
2
−(
3
)
2
6
(
2
−
3
)
=
2−3
12
+
18
=
−1
2×2×3
+
3×3×2
=−(
2
2
×3
+
3
2
×2
)
=−(2
3
+3
2
)
=−2
3
−3
2