Math, asked by anushkamoulick, 1 month ago

Rationalise 2+√3/2-√3

Answers

Answered by abhinavsingh128
1

Answer:

iinboxx me,,,,,,,,,,,,,

Attachments:
Answered by MrImpeccable
3

ANSWER:

To Rationalize:

  • (2 + √3)/(2 - √3)

Solution:

We are given that,

\implies\dfrac{2+\sqrt3}{2-\sqrt3}

Now, we need to rationalize. So, we see the denominator.

The denominator is 2 - √3, and the rationalising factor of it will be 2 + √3.

So,

\implies\dfrac{2+\sqrt3}{2-\sqrt3}

Multiplying and dividing by 2 + √3.

\implies\dfrac{2+\sqrt3}{2-\sqrt3}\times\dfrac{2+\sqrt3}{2+\sqrt3}

Combining the fractions,

\implies\dfrac{(2+\sqrt3)(2+\sqrt3)}{(2-\sqrt3)(2+\sqrt3)}

We know that,

\hookrightarrow (a+b)(a-b)=a^2-b^2

So,

\implies\dfrac{(2+\sqrt3)^2}{(2-\sqrt3)(2+\sqrt3)}

\implies\dfrac{(2+\sqrt3)^2}{(2)^2-(\sqrt3)^2}

We know that,

\hookrightarrow (a+b)^2=a^+-b^2+2ab

So,

\implies\dfrac{(2+\sqrt3)^2}{(2)^2-(\sqrt3)^2}

\implies\dfrac{(2)^2+(\sqrt3)^2+2(2)(\sqrt3)}{4-3}

\implies\dfrac{4+3+4\sqrt3}{1}

\implies\bf7+4\sqrt3

Therefore,

\implies\bf\dfrac{2+\sqrt3}{2-\sqrt3}=7+4\sqrt3

Similar questions