Math, asked by miranas100, 1 year ago

rationalise 4+ root 5 + 4 - root 5/4- root 5+4+root 5

Answers

Answered by leelagetha
258
hope you understand the answer
Attachments:
Answered by pulakmath007
29

\displaystyle \sf{  \frac{4 +  \sqrt{5} }{4 -  \sqrt{5} }   + \frac{4  -   \sqrt{5} }{4  +  \sqrt{5} }  } =  \frac{42}{11}

Given :

\displaystyle \sf{  \frac{4 +  \sqrt{5} }{4 -  \sqrt{5} }   + \frac{4  -   \sqrt{5} }{4  +  \sqrt{5} }  }

To find :

To simplify the expression

Solution :

Step 1 of 2 :

Write down the given expression

The given expression is

\displaystyle \sf{  \frac{4 +  \sqrt{5} }{4 -  \sqrt{5} }   + \frac{4  -   \sqrt{5} }{4  +  \sqrt{5} }  }

Step 2 of 2 :

Simplify the expression

\displaystyle \sf{  \frac{4 +  \sqrt{5} }{4 -  \sqrt{5} }   + \frac{4  -   \sqrt{5} }{4  +  \sqrt{5} }  }

\displaystyle \sf =  \frac{(4 +  \sqrt{5})(4 +  \sqrt{5})  }{(4 +  \sqrt{5} )(4 -  \sqrt{5}) }   + \frac{(4  -   \sqrt{5})(4 -  \sqrt{5}  )}{(4  +  \sqrt{5} )(4  - \sqrt{5} )}

\displaystyle \sf =  \frac{{(4 +  \sqrt{5})}^{2}   }{ {(4)}^{2}  -  {( \sqrt{5} )}^{2}  }   + \frac{{(4  -  \sqrt{5})}^{2}   }{ {(4)}^{2}  -  {( \sqrt{5} )}^{2}  }

\displaystyle \sf =  \frac{{ {(4)}^{2} +  (  \sqrt{5})}^{2}   - 2 \times 4 \times  \sqrt{5}  }{ 16 - 5 }   +   \frac{{ {(4)}^{2} +  (  \sqrt{5})}^{2}    +  2 \times 4 \times  \sqrt{5}  }{ 16 - 5  }

\displaystyle \sf =   \frac{16 + 5  +  8 \sqrt{5} }{11}  + \frac{16 + 5 - 8 \sqrt{5} }{11}

\displaystyle \sf =   \frac{21+  8 \sqrt{5} }{11}  + \frac{21 - 8 \sqrt{5} }{11}

\displaystyle \sf =   \frac{21  +  8 \sqrt{5} + 21 - 8 \sqrt{5}  }{11}

\displaystyle \sf =   \frac{42  }{11}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. the value of (√5+√2)²

https://brainly.in/question/3299659

2. Simplify ( 8+√5)(8-√5).

https://brainly.in/question/17061574

Similar questions