Math, asked by sakshamsaggar, 3 months ago

Rationalise
5√3 -4√2÷ 4√3+3√2​

Answers

Answered by XxLatexQueenxX
2

GIVEN :-

\large \bold{5 \sqrt{3} - 4 \sqrt{2}  \div 4 \sqrt{3}  + 3 \sqrt{2}  }

 \tiny \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

SOLUTION :-

\orange\looparrowright\large \bold \orange{5 \sqrt{3} - 1 \sqrt{2} \sqrt{3} + 3 \sqrt{2}    }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\orange\looparrowright\large \bold \orange{5 \sqrt{3} -  \sqrt{6} + 3 \sqrt{2}   }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\red\looparrowright\large \bold \red{10.4534} \huge \red \checkmark

Answered by IntrovertLeo
8

Given:

The expression -

\bf \dfrac{5\sqrt{3}-4}{4\sqrt{3}+3\sqrt{2}}

What To Find:

We have to -

  • Rationalise the denominator.

Solution:

Here, the conjugate of the denominator is,

\sf \implies 4\sqrt{3} - 3\sqrt{2}

Multiply the conjugate with the expression,

\sf \implies \dfrac{5\sqrt{3}-4}{4\sqrt{3}+3\sqrt{2}} \times \dfrac{4\sqrt{3}-3\sqrt{2}}{4\sqrt{3}-3\sqrt{2}}

Take them as common,

\sf \implies \dfrac{5\sqrt{3}-4 \times 4\sqrt{3}-3\sqrt{2}}{4\sqrt{3}+3\sqrt{2} \times 4\sqrt{3}-3\sqrt{2}}

Solving the numerator,

\sf \implies \dfrac{5\sqrt{3}(4\sqrt{3}-3\sqrt{2})-4(4\sqrt{3}-3\sqrt{2})}{4\sqrt{3}+3\sqrt{2} \times 4\sqrt{3}-3\sqrt{2}}

Solving the numerator further,

\sf \implies \dfrac{60 - 15\sqrt{6} - 16\sqrt{3}+12\sqrt{2}}{4\sqrt{3}+3\sqrt{2} \times 4\sqrt{3}-3\sqrt{2}}

Solving the denominator using the identities (a - b) (a + b) = a² - b²,

\sf \implies \dfrac{60 - 15\sqrt{6} - 16\sqrt{3}+12\sqrt{2}} {(4\sqrt{3})^2-(3\sqrt{2})^2}

Solve the brackets,

\sf \implies \dfrac{60 - 15\sqrt{6} - 16\sqrt{3}+12\sqrt{2}} {48 - 18}

Subtract 18 from 48,

\sf \implies \dfrac{60 - 15\sqrt{6} - 16\sqrt{3}+12\sqrt{2}} {30}

Final Answer:

∴ Thus, the answer is \sf \dfrac{60 - 15\sqrt{6} - 16\sqrt{3}+12\sqrt{2}} {30} after rationalising the denominator.

Similar questions