Math, asked by ChitwanpreetSingh, 2 months ago

rationalise denominator of 6-4√3 / 6+4√3​

Answers

Answered by Anonymous
7

 \frac{6 - 4 \sqrt{3} }{6 + 4 \sqrt{3} }  \times  \frac{6 - 4 \sqrt{3} }{6 - 4 \sqrt{3} }  \\  \\   = \frac{ ({6 - 4 \sqrt{3} )}^{2} }{ {(6)}^{2}  -  {(4 \sqrt{3} )}^{2} }  \\  \\  =   \frac{ {6}^{2}   +   {(4 \sqrt{3} )}^{2}  - 2 \times 6 \times 4 \sqrt{3} }{36 - (16 \times 3)}  \\  \\  =  \frac{36 + (16 \times 3) - 12 \times 4 \sqrt{3} }{36 - 48}  \\  \\  =  \frac{36 + 48 - 12 \times 4 \sqrt{3} }{ - 12}  \\  \\  =  \frac{72 \times 4 \sqrt{3} }{ - 12}  \\  \\  =  - 6 \times 4 \sqrt{3}  \\  \\  = 2( - 3 \times 2 \sqrt{3} )

Answered by TheUntrustworthy
75

Given:

 \frac{6 - 4 \sqrt{3} }{6 + 4 \sqrt{3} }

Solution:

 \frac{6 - 4 \sqrt{3} }{6 + 4 \sqrt{3} }  \times  \frac{6 - 4 \sqrt{3} }{6 - 4 \sqrt{3} }  \\  =  >  \frac{ {(6 - 4 \sqrt{3} )}^{2} }{(6 + 4 \sqrt{3} )(6 - 4 \sqrt{3}) }  \\  =  >  \frac{36 - 48 \sqrt{3} + 48 }{36 - 48}  \\  =  >  \frac{84 - 48 \sqrt{3} }{ - 12}  \\  =  >  - (7 - 4 \sqrt{3} ) \\  =  > 4 \sqrt{3}  - 7

Therefore:

4 \sqrt{3}  - 7

Ans

Similar questions