Math, asked by Leader111, 2 months ago

Rationalise :
\dashrightarrow \tt \boxed{ \green{ \cfrac{3 + 2 \sqrt{5} }{5 - 2 \sqrt{3} } }}
Answer It As Soon As Possible !!​

Answers

Answered by SachinGupta01
10

 \large{ \sf \underline{Solution  - }}

To rationalise :

 \sf \implies\cfrac{3 + 2 \sqrt{5} }{5 - 2 \sqrt{3} }

Here the denominator is in the form of (a-b). Rationalising factor of (a-b) is (a+b). So, rationalising factor of (5-2√3) is (5+2√3). We will multiply (5+2√3) with both the numerator and denominator to rationalise the denominator.

Now,

 \sf \implies\cfrac{3 + 2 \sqrt{5} }{5 - 2 \sqrt{3} }    \times\cfrac{5+2 \sqrt{3}   }{5+2 \sqrt{3}  }

Combine fractions

{ \sf \implies\cfrac{(3 + 2 \sqrt{5})(5+2 \sqrt{3}  ) }{(5 - 2 \sqrt{3})({5+2 \sqrt{3}) } }}

We know that,

\sf \implies (a + b)(a - b) = a^{2}  - b ^{2}

So,

 \sf \implies\cfrac{(3 + 2 \sqrt{5})(5+2 \sqrt{3}  ) }{(5) ^{2} - (2 \sqrt{3})^{2}   }

Simplify the denominator,

 \sf \implies\cfrac{(3 + 2 \sqrt{5})(5+2 \sqrt{3}  ) }{25 - 12   }

 \sf \implies\cfrac{(3 + 2 \sqrt{5})(5+2 \sqrt{3}  ) }{13  }

Now, simplify the numerator,

 \sf \implies\cfrac{3(5 + 2  \sqrt{3}) + 2 \sqrt{5} (5 + 2  \sqrt{3} )  }{13  }

 \sf \implies\cfrac{15 + 6 \sqrt{3}  + 10 \sqrt{5}  + 4 \sqrt{15}  }{13  }

Hence,

On rationalising we got,

 \bf \implies\cfrac{15 + 6 \sqrt{3}  + 10 \sqrt{5} +4\sqrt{15}  }{13  }

Similar questions