Math, asked by arshpreetpannu189, 1 month ago

rationalise the denominator 16/4√3-√5 b) 2/2 √2-√7​

Answers

Answered by VanditaNegi
3

Solutions :-

1.

 \frac{16}{4 \sqrt{3} -  \sqrt{5}  }  \\  \\  \frac{16}{ 4\sqrt{3}  -  \sqrt{5} }  \times  \frac{(4 \sqrt{3}  +   \sqrt{5}  )}{(4 \sqrt{3} +  \sqrt{5}  )}  \\  \\   \frac{ {16(4 \sqrt{3}  +  \sqrt{5} )} }{ ({4 \sqrt{3}) }^{2}  -  {( \sqrt{5}) }^{2} }  \\  \\  \frac{ {16(4 \sqrt{3}  +  \sqrt{5} )} }{48 - 5}  = \frac{ {16(4 \sqrt{3}  +  \sqrt{5} )} }{43}

2.

 \frac{2}{2 -  \sqrt{2} -  \sqrt{7}  }  =   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (taking \: 2 -  \sqrt{2} \: as \: a \: and \: 7 \: as \: b \: and \: making \: the \:  {a}^{2}  -  {b}^{2} )  \\  \\ \frac{2}{2 -  \sqrt{2}  -  \sqrt{7} }  \times  \frac{2 -  \sqrt{2}   + 7}{2 -  \sqrt{2}  + 7}  \\  \\  \frac{2(2 -  \sqrt{2} + 7)}{( {2 -  \sqrt{2}) }^{2}   -  {(7)}^{2} } \\  \\  \frac{2(2 -  \sqrt{2 } + 7) }{6 - 4 \sqrt{2}  - 49}

Rationalise it again. Sorry i am unable to do as this app is crashing again and again.

HopE It HeLps YoU ✨

Similar questions