Math, asked by himanshu2829, 2 months ago

rationalise the denominator 3+√2 / (3√2-2√3)​

Answers

Answered by LaCheems
27

{\huge{\boxed{\red{A}}}{\boxed{\green{N}}}{\boxed{\purple{S}}}{\boxed{\orange{W}}}{\boxed{\red{E}}}{\boxed{\green{R}}}}

To Solve:

  • rationalise the denominator 3+√2 / (3√2-2√3)

Solⁿ:

 { \tt{\frac{3 +  \sqrt{2} }{3 \sqrt{2} - 2 \sqrt{3}  }}}  \\  \\  { \tt{\frac{3 +  \sqrt{2} }{3 \sqrt{2} - 2 \sqrt{3}  }}} \:  \times  \: { \tt{\frac{3 \sqrt{2}  +  2 \sqrt{3}}{ 3 \sqrt{2}  +  2 \sqrt{3}}}} \\  \\ { \tt{identity = (x - y)(x + y) =  {x}^{2}  -  {y}^{2} }} \\  \\{ \tt{  \frac{3 +  \sqrt{2} \: (3 \sqrt{2} + 2 \sqrt{3)} }{ {(3 \sqrt{2} )}^{2} \:  -  \:   {(2 \sqrt{3})}^{2}  }}}  \\  \\ { \tt{ \frac{6 + 9 \sqrt{2}  + 6 \sqrt{3}  + 2 \sqrt{6} }{(9 \times 2) -(4 \times 3)}}}  \\  \\ { \boxed{ \red{ \tt{ \frac{6 + 9 \sqrt{2}  + 6 \sqrt{3}  + 2 \sqrt{6} }{6}}}}}

HOPE IT HELPS

MARK BRAINLIEST PLS :)

Similar questions