Math, asked by RakshaYadav, 1 year ago

Rationalise the denominator:
3√5+√3 /√5-√3​

Answers

Answered by dhruv958champion
5

Hope This Answer Helps You

Tried my best to answer your question

Attachments:
Answered by TheAstrophile
14

Answer:

9 + 2√5

Step-by-step explanation:

Rationalizing the denominator: Converting an irrational denominator of a fraction to a rational denominator.

Given expression:

 =  \frac{3 \sqrt{5} +  \sqrt{3} }{ \sqrt{5} -  \sqrt{3}  }

Rationalizing the given expression:

To rationalize, we need to multiply the numerator and denominator by √5 + √3 / √5 + √3.

 =  \frac{3 \sqrt{5} +  \sqrt{3}  }{ \sqrt{5} -  \sqrt{3}  }  \times  \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5} +  \sqrt{3}  }

 =  \frac{(3 \sqrt{5} +  \sqrt{3} )( \sqrt{5} +  \sqrt{3})   }{( \sqrt{5}  -  \sqrt{3})( \sqrt{5}  +  \sqrt{3})  }

 =  \frac{3 \sqrt{5}( \sqrt{5}  +  \sqrt{3} ) +  \sqrt{3}( \sqrt{5} +  \sqrt{3} )   }{5 - 3}

 =  \frac{15 + 3 \sqrt{15} +  \sqrt{15}  + 3 }{2}

 =  \frac{18 + 4 \sqrt{15} }{2}

 =  \frac{2(9 + 2 \sqrt{15}) }{2}

 = 9 + 2 \sqrt{15}


Anonymous: Amazing Stephy!❣
TheAstrophile: Thanka Cshw❣^^"
Similar questions