Math, asked by Maline, 1 year ago

Rationalise the denominator 4 /2 +root 3 +root 7

Answers

Answered by SPIZAR
83
I hope it helps
if it does do tell
Attachments:
Answered by Haezel
14

Answer:

The rationalized value of \frac{4}{2+\sqrt{3}+\sqrt{7}} is \bold{\frac{2 \sqrt{3}+3-\sqrt{21}}{3}}

Step-by-step explanation:

To rationalize \frac{4}{2+\sqrt{3}+\sqrt{7}}, “multiply the numerator and denominator” by \bold{(2+\sqrt{3})-\sqrt{7}}

\begin{array}{l}{\frac{4}{2+\sqrt{3}+\sqrt{7}} \times \frac{(2+\sqrt{3})-\sqrt{7}}{(2+\sqrt{3})-\sqrt{7}}} \\ {x^{2}-y^{2}=(x+y)(x-y)}\end{array}

Hence the equation becomes, \frac{4(2+\sqrt{3})-\sqrt{7}}{(2+\sqrt{3})^{2}-(\sqrt{7})^{2}}

\begin{array}{l}{=\frac{4(2+\sqrt{3})-\sqrt{7}}{4+3+4 \sqrt{3}-7}} \\ {=\frac{4(2+\sqrt{3})-\sqrt{7}}{7+4 \sqrt{3}-7}} \\ {=\frac{2+\sqrt{3}-\sqrt{7}}{\sqrt{3}} * \frac{\sqrt{3}}{\sqrt{3}}} \\ {=\frac{2 \sqrt{3}+3-\sqrt{21}}{3}} \\ {=\frac{2 \sqrt{3}+3-\sqrt{21}}{3}}\end{array}

Similar questions