Math, asked by ancil, 1 year ago

rationalise the denominator

Attachments:

hukam0685: hey,read my solution,hope it will helps you

Answers

Answered by hukam0685
4

 \frac{1}{ \sqrt{6} +  \sqrt{5} -  \sqrt{11}   }  \\  =  \frac{( \sqrt{6}  +  \sqrt{5} ) +  \sqrt{11} }{(( \sqrt{6} +  \sqrt{5}) -  \sqrt{11} ))(( \sqrt{6}  +  \sqrt{5}) +  \sqrt{11} )   }  \\  =  \frac{ \sqrt{6} +  \sqrt{5}  +  \sqrt{11}  }{(( { \sqrt{6} +  \sqrt{5} ) }^{2}  - ( { \sqrt{11}) }^{2} }    \\  =  \frac{ \sqrt{6}  +  \sqrt{5} +  \sqrt{11}  }{6 + 5 + 2 \sqrt{30}  - 11}  \\  =  \frac{ \sqrt{6}  +  \sqrt{5} +  \sqrt{11}  }{11 + 2 \sqrt{30}  - 11}  \\  =  \frac{( \sqrt{6}  +  \sqrt{5} +  \sqrt{11}) \sqrt{30}   }{2 \sqrt{30} \times  \sqrt{30}  }  \\  =  \frac{( \sqrt{6} +  \sqrt{5} +  \sqrt{11}) \sqrt{30}    }{2 \times 30} \\   =  \frac{( \sqrt{6} +  \sqrt{5} +  \sqrt{11}  ) \sqrt{30}  }{60}
Similar questions