Math, asked by tanmaykhamankaoxqulx, 1 year ago

rationalise the denominator 5/root3-root5

Answers

Answered by pinquancaro
113

Answer:

The rationalize form is \frac{5}{\sqrt{3}-\sqrt{5}}=-\frac{5(\sqrt{3}+\sqrt{5})}{2}

Step-by-step explanation:

Given : Expression \frac{5}{\sqrt{3}-\sqrt{5}}

To find : Rationalize the expression ?

Solution :

Expression \frac{5}{\sqrt{3}-\sqrt{5}}

Multiply the numerator and denominator by \sqrt{3}+\sqrt{5}

=\frac{5}{\sqrt{3}-\sqrt{5}}\times \frac{\sqrt{3}+\sqrt{5}}{\sqrt{3}+\sqrt{5}}

=\frac{5(\sqrt{3}+\sqrt{5})}{(\sqrt{3})^{2} - (\sqrt{5})^{2}}

=\frac{5(\sqrt{3}+\sqrt{5})}{3-5}

=\frac{5(\sqrt{3}+\sqrt{5})}{-2}

=-\frac{5(\sqrt{3}+\sqrt{5})}{2}

Therefore, The rationalize form is \frac{5}{\sqrt{3}-\sqrt{5}}=-\frac{5(\sqrt{3}+\sqrt{5})}{2}

Answered by mysticd
33

Answer:

\frac{5}{(\sqrt{3}-\sqrt{5})}=\frac{-(\sqrt{3}+\sqrt{5})}{2}

Step-by-step explanation:Rationalizing the denominator of \frac{5}{\sqrt{3}-\sqrt{5}}\\multiply\: numerator\: and\; denominator\: by\: \sqrt{3}+\sqrt{5} \:, we\: get\\=\frac{(\sqrt{3}+\sqrt{5})}{(\sqrt{3}-\sqrt{5})(\sqrt{3}+\sqrt{5})}\\=\frac{\sqrt{3}+\sqrt{5}}{(\sqrt{3})^{2} - (\sqrt{5})^{2}}\\=\frac{\sqrt{3}+\sqrt{5}}{(3-5)}\\=\frac{\sqrt{3}+\sqrt{5}}{(-2)} \* denominator\: rationalized *\\\Therefore,\\\frac{5}{(\sqrt{3}-\sqrt{5})}=\frac{-(\sqrt{3}+\sqrt{5})}{2}\\

Similar questions