Math, asked by bathu1asanthosha14, 8 months ago

rationalise the denominator and simplify 1 by 7 - √ 5​

Answers

Answered by Brainlyheros
7

Step-by-step explanation:

 \frac{1}{7 -   \sqrt{5}  }  \\  \\  =  \geqslant  \frac{1}{7 -  \sqrt{5} }  \times  \frac{7 +  \sqrt{5} }{7 +  \sqrt{5} }  \\  \\  =  \geqslant  \frac{7 +  \sqrt{5} }{(7) {}^{2} - ( \sqrt{5}  ) {}^{2} }  \\  \\  =  \geqslant   \frac{7 +  \sqrt{5} }{49 - 5}  \\  \\  =  \geqslant  \frac{7 +  \sqrt{5} }{44}

Answered by Anonymous
55

ANSWER

\large\underline\bold{GIVEN,}

\dashrightarrow \dfrac{1}{7-\sqrt{5}}

\large\underline\bold{TO\:RATIONALISE\:THE\: DENOMINATOR,}

. IDENTITY IN USE,

\large{\boxed{\bf{ \star\:\: (a+b)(a-b)=a^2-b^2\:\: \star}}}

\large\underline\bold{SOLUTION,}

\dashrightarrow \dfrac{1}{7-\sqrt{5}}

\therefore multiplying\: denominator\:and\:numerator\:by\: 7+\sqrt{5}.we\:get,

\implies \dfrac{1}{7-\sqrt{5}} \times \dfrac{7+\sqrt{5}}{7+\sqrt{5}}

\implies \dfrac{7+\sqrt{5}}{(7-\sqrt{5})(7+\sqrt{5})}

\implies \dfrac{7+\sqrt{5}}{[ (7)^2-(\sqrt{5})^2]}\:--\boxed{from\:given\:identity.}

\implies \dfrac{7+\sqrt{5}}{49-5}

\implies \dfrac{7+\sqrt{5}}{44}

\large{\boxed{\bf{ \star\:\:\dfrac{7+\sqrt{5}}{44} \:\: \star}}}

\large\underline\bold{RATIONALISED\: DENOMINATOR\:IS\: \dfrac{7+\sqrt{5}}{44}}

_____________

Similar questions