Math, asked by Sandy260, 1 year ago

( rationalise the denominator ) Find the values of the rational numbers a and b if a + b = √15

Attachments:

Answers

Answered by TanyaThakur233
4
Hope it helps..........
Mark it as brainliest
Attachments:

Flicker: Yes it’s correct even I got the same answer
Answered by DaIncredible
4
Heya !!!

Identities used :

 {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy \\  {(x - y)}^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy \\ (x + y)(x - y) =  {x}^{2}  -  {y}^{2}


 \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5}  -  \sqrt{3} }  = a + b \sqrt{15}  \\

L.H.S

On rationalizing the denominator we get,

 =  \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5} -  \sqrt{3}  }  \times  \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5} +  \sqrt{3}  }  \\  \\  =  \frac{ {( \sqrt{5} )}^{2} +  {( \sqrt{3} )}^{2}  + 2( \sqrt{5})( \sqrt{3}  ) }{ {( \sqrt{5} )}^{2} -  {( \sqrt{3} )}^{2}  }  \\  \\  =  \frac{5 + 3 + 2 \sqrt{15} }{5 - 3}  \\  \\  =  \frac{8 + 2 \sqrt{15} }{2}  \\  \\  =  \frac{2(4 +  \sqrt{15} )}{2}  \\  \\  = 4 +  \sqrt{15}  \\

On comparing we get,

4 +  \sqrt{15}  = a + b \sqrt{15}  \\  \\ a = 4 \:  :  \: b = 1


Hope this helps ☺
Similar questions