Math, asked by gamernareshff, 4 months ago


Rationalise the denominator of 1/(2+V3).

Answers

Answered by muskanperween225
4

Step-by-step explanation:

 \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }

 =  \frac{2 -  \sqrt{3} }{(2 +  \sqrt{3})(2 -  \sqrt{3} ) }

 =  \frac{2 -  \sqrt{3} }{( {2)}^{2} - ( { \sqrt{ 3}) }^{2}  }

 =  \frac{2 -  \sqrt{3} }{4 - 3}

 = 2 -  \sqrt{3}

Answered by roczerbala
2

Answer:

Step-by-step explanation:

1/(2 + \sqrt{3} ) = 1/(2 + \sqrt{3} ) * 2 - \sqrt{3} /2 - \sqrt{3} \\                        = 2 -  \sqrt{3} /(2 + \sqrt{3} )(2 -  \sqrt{3} )\\                        = 2 -  \sqrt{3}/2^2 - ( \sqrt{3})^2\\                        = 2 -  \sqrt{3}/4 - 3\\                        = 2 - \sqrt{3}

Plz mark me as a Brainliest

Similar questions