Math, asked by abdulbpkr2004, 1 year ago

rationalise the denominator of 1/3√3+2√2

Answers

Answered by ShuchiRecites
3
\textbf{ \underline{ \huge{ Hello Mate! }}}

 \frac{1}{3 \sqrt{3}  + 2 \sqrt{2} }  \\ rationalize \\  \frac{1}{3 \sqrt{3}  + 2 \sqrt{2} }  \times  \frac{3 \sqrt{3}  - 2 \sqrt{2} }{3 \sqrt{3}  - 2 \sqrt{2} }  \\  =  \frac{3 \sqrt{3} - 2 \sqrt{2}  }{ {(3 \sqrt{3} )}^{2} -  {(2 \sqrt{2} )}^{2}  }  \\  =  \frac{3 \sqrt{3}  - 2 \sqrt{2} }{9 \times 3 - 4 \times 2}  \\  =  \frac{3 \sqrt{3}  - 2 \sqrt{2} }{27 - 8}  =  \frac{3 \sqrt{3} - 2 \sqrt{2}  }{19}
Have great future ahead!

abdulbpkr2004: thank u very very much !!!
ShuchiRecites: Ur most wlcm mate!
abdulbpkr2004: r u sure the answer is correct??
ShuchiRecites: Yeah
abdulbpkr2004: tnx
ShuchiRecites: wlcm
Answered by Anonymous
2

 \bf \large \it \: Hey  \: User!!!

given \:  =  >  \frac{1}{3 \sqrt{3}  + 2 \sqrt{2} }  \\  \\  =  \frac{1}{3 \sqrt{3}  + 2 \sqrt{2} }  \times  \frac{3 \sqrt{3}  - 2 \sqrt{2} }{3 \sqrt{3}  - 2 \sqrt{ 2} }  \\  \\  =  \frac{3 \sqrt{3} - 2 \sqrt{2}  }{(3 \sqrt{ 3 }  + 2 \sqrt{2})(3 \sqrt{3}  - 2 \sqrt{2} ) }  \\  \\  =  \frac{3 \sqrt{3} - 2 \sqrt{2}  }{ {(3 \sqrt{3} )}^{2}  -  {(2 \sqrt{2}) }^{2} }  \\  \\  =  \frac{3 \sqrt{3}  - 2 \sqrt{2} }{27 - 8}  \\  \\  =    \boxed{\frac{3 \sqrt{3}  - 2 \sqrt{2} }{19} } \: final \: answer

 \bf \large \it{Cheers!!!}
Similar questions