Math, asked by april1258, 10 months ago

Rationalise the denominator of 1/root 11 + root 7

Answers

Answered by dancingmonkey1234
2

Step-by-step explanation:

Done

Mark me as brainliest

Attachments:
Answered by pulakmath007
24

\displaystyle \sf{ \frac{1}{ \sqrt{11} +  \sqrt{7}  }   } =  \frac{ \sqrt{11}  -  \sqrt{7} }{4}

Given :

\displaystyle \sf{ \frac{1}{ \sqrt{11} +  \sqrt{7}  }   }

To find :

To rationalize the denominator

Solution :

Step 1 of 2 :

Write down the given expression

Here the given expression is

\displaystyle \sf{ \frac{1}{ \sqrt{11} +  \sqrt{7}  }   }

Step 2 of 2 :

Rationalize the denominator

\displaystyle \sf{ \frac{1}{ \sqrt{11} +  \sqrt{7}  }   }

Multiplying both of the numerator and denominator by √11 - √7 we get

\displaystyle \sf{ \frac{1}{ \sqrt{11} +  \sqrt{7}  }   }

\displaystyle \sf{  = \frac{(\sqrt{11}  -   \sqrt{7})}{ (\sqrt{11} +  \sqrt{7})(\sqrt{11}  -  \sqrt{7})  }   }

\displaystyle \sf{  = \frac{(\sqrt{11}  -   \sqrt{7})}{ {(\sqrt{11} )}^{2} - { ( \sqrt{7}) }^{2}  }   }

\displaystyle \sf{  = \frac{(\sqrt{11}  -   \sqrt{7})}{ 11 - 7  }   }

\displaystyle \sf{  = \frac{\sqrt{11}  -   \sqrt{7}}{ 4  }   }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. the value of (√5+√2)²

https://brainly.in/question/3299659

2. Simplify ( 8+√5)(8-√5).

https://brainly.in/question/17061574

#SPJ3

Similar questions