Rationalise the denominator of :
1) root 7 + root 5 / root 7 - root 5
2) root 7 + root 2 / 9 + 2 root 14
Answers
Answered by
26
1)
(√7 + √5)/( √7 - √5)
= ( √7 + √5)( √7 + √5)/( √7 - √5)(√7+√5)
= (√7 + √5)²/( √7² - √5²)
= ( 7 + 5 + 2√7.√5)/( 7 -5)
= ( 12 + 2√35)/2
= 6 + √35
====×××××××××=========×××××××======
(2)
( √7 + √2)/( 9 + 2√14)
= ( √7 + √2)/( 7 + 2 + 2√7.√2)
= ( √7 + √2)/( √7² + √2² + 2√7.√2)
=( √7 + √2)/( √7 + √2)²
= 1/( √7 + √2)
= (√7 -√2)/( √7 + √2)(√7 -√2)
= (√7 - √2)/5
(√7 + √5)/( √7 - √5)
= ( √7 + √5)( √7 + √5)/( √7 - √5)(√7+√5)
= (√7 + √5)²/( √7² - √5²)
= ( 7 + 5 + 2√7.√5)/( 7 -5)
= ( 12 + 2√35)/2
= 6 + √35
====×××××××××=========×××××××======
(2)
( √7 + √2)/( 9 + 2√14)
= ( √7 + √2)/( 7 + 2 + 2√7.√2)
= ( √7 + √2)/( √7² + √2² + 2√7.√2)
=( √7 + √2)/( √7 + √2)²
= 1/( √7 + √2)
= (√7 -√2)/( √7 + √2)(√7 -√2)
= (√7 - √2)/5
Anonymous:
Thanks for answer
Answered by
12
♠Answer♠
Superman : " I'm always there to help good people "
1) (√7+√5)\(√7-√5)
on rationalising ,
multiply both numerator and denominator with ( √7+√3 )
You will get ,
(√7+√5)² \2
= 6+√35
2) (√7+√2)\(9+2√14)
on rationalising ,
multiply both numerator and denominator by (√7-√2)
see , 9+√14 = (√7+√2)²
so , the equation will become :
1\(√7+√2)
on Multiplying,
(√7-√2)/5
SOUNDS SIMPLE DOESN'T IT ?
#SupermanINFINITY
Superman : " I'm always there to help good people "
1) (√7+√5)\(√7-√5)
on rationalising ,
multiply both numerator and denominator with ( √7+√3 )
You will get ,
(√7+√5)² \2
= 6+√35
2) (√7+√2)\(9+2√14)
on rationalising ,
multiply both numerator and denominator by (√7-√2)
see , 9+√14 = (√7+√2)²
so , the equation will become :
1\(√7+√2)
on Multiplying,
(√7-√2)/5
SOUNDS SIMPLE DOESN'T IT ?
#SupermanINFINITY
Similar questions