Rationalise the denominator of 15/√6+√5-√11
Answers
Answered by
17
15/( √5 + √6 -√11 )
= 15( √5 + √6 + √11)/( √5 + √6 -√11)(√5 + √6 + √11)
= 15( √5 + √6 + √11)/{ (√5 + √6)² - √11²}
= 15( √5 + √6 + √11)/{ 11+2√30 -11}
= 15( √5 + √6 + √11)/2√30
again,
= 15(√5 + √6 + √11)√30/(2√30)(√30)
= 15(√150 + √180 + √330 )/60
= ( √150 + √180 + √330)/4
= 15( √5 + √6 + √11)/( √5 + √6 -√11)(√5 + √6 + √11)
= 15( √5 + √6 + √11)/{ (√5 + √6)² - √11²}
= 15( √5 + √6 + √11)/{ 11+2√30 -11}
= 15( √5 + √6 + √11)/2√30
again,
= 15(√5 + √6 + √11)√30/(2√30)(√30)
= 15(√150 + √180 + √330 )/60
= ( √150 + √180 + √330)/4
Answered by
13
15/(√5 + √6 -√11)
= 15(√5 + √6 + √11)/(√5 + √6 -√11)(√5 + √6 + √11)
= 15(√5 + √6 + √11)/{(√5 + √6)² - √11²}
= 15(√5 + √6 + √11)/{√5²+√6²+2(√5)(√6) - 11}
= 15(√5+√6+√11)/(5+6+2√30 - 11)
= 15(√5 + √6 + √11)/{ 11+2√30 -11}
= 15( √5 + √6 + √11)/2√30
Again we have to rationalise,
= 15(√5 + √6 + √11)×√30/(2√30)(√30)
= 15(√150 + √180 + √330)/60
= (√150 + √180 + √330)/4
Now the denominator is rationlised.
Hope it helps
= 15(√5 + √6 + √11)/(√5 + √6 -√11)(√5 + √6 + √11)
= 15(√5 + √6 + √11)/{(√5 + √6)² - √11²}
= 15(√5 + √6 + √11)/{√5²+√6²+2(√5)(√6) - 11}
= 15(√5+√6+√11)/(5+6+2√30 - 11)
= 15(√5 + √6 + √11)/{ 11+2√30 -11}
= 15( √5 + √6 + √11)/2√30
Again we have to rationalise,
= 15(√5 + √6 + √11)×√30/(2√30)(√30)
= 15(√150 + √180 + √330)/60
= (√150 + √180 + √330)/4
Now the denominator is rationlised.
Hope it helps
Similar questions