Math, asked by mdivakar1438, 1 year ago

Rationalise the denominator of 3/5-root3+2/5+root 3

Answers

Answered by LovelyG
18

Answer:

\boxed{\sf \dfrac{25 + \sqrt{3}}{22}}

Step-by-step explanation:

Given that ;

 \sf  \frac{3}{5 -  \sqrt{3} }  +  \frac{2}{5 +  \sqrt{3} }  \\  \\ \bf Taking  \: LCM :  \\ \\ \implies \sf  \frac{3(5 +  \sqrt{3} ) + 2(5 -  \sqrt{3}) }{(5 -  \sqrt{3} )(5 +  \sqrt{3} )}  \\  \\ \implies \sf  \frac{15 + 3 \sqrt{3}  + 10 - 2 \sqrt{3} }{(5) {}^{2} - ( \sqrt{3}) {}^{2} }  \\  \\ \implies \sf   \frac{25 +  \sqrt{3} }{25 - 3}  \\  \\ \implies \sf   \frac{25 +  \sqrt{3} }{22}

Hence, the answer is \bf \dfrac{25 + \sqrt{3}}{22}

_______________________

\large{\underline{\underline{\mathfrak{\heartsuit \: Algebraic \: Identity : \: \heartsuit}}}}

  • (a + b) (a - b) = a² - b²
  • (a + b)² = a² + b² + 2ab
  • (a - b)² = a² + b² - 2ab

Answered by TheCommando
15

Question:

Rationalise the denominator of

 \dfrac{3}{5- \sqrt{3}} + \dfrac{2}{5+\sqrt{3}}

Solution:

 \dfrac{3}{5- \sqrt{3}} \times \dfrac{5+\sqrt{3}}{5+\sqrt{3}} + \dfrac{2}{5+\sqrt{3}} \times \dfrac{5-\sqrt{3}}{5-\sqrt{3}}

  = \dfrac{3(5+\sqrt{3})}{{(5)}^{2} - {(\sqrt{3})}^{2}} +  \dfrac{2(5-\sqrt{3})}{{(5)}^{2} - {(\sqrt{3})}^{2}}

 = \dfrac{3(5+\sqrt{3})}{25-3} +  \dfrac{2(5-\sqrt{3})}{25-3}

 = \dfrac{15+3\sqrt{3}}{22} + \dfrac{10-2\sqrt{3}}{22}

 = \dfrac{15 + 3\sqrt{3} + 10 - 2\sqrt{3}}{22}

 = \dfrac{25 + \sqrt{3}}{22}

Answer

 \boxed{\dfrac{25 + \sqrt{3}}{22}}

Identities used

 a^{2} - b^{2} = (a + b)(a-b)

Similar questions