Math, asked by salhotraikshita, 9 months ago

Rationalise the denominator of 4/ 2+√3+√7

Answers

Answered by anjalisingh2006
1

Answer:

Step-by-step explanation:

your answer

Attachments:
Answered by Anonymous
8

 \huge \matfrak \red{answer}

_______________________________

 \huge \sf \underline{Question}

Rationalise the denominator of 4/ 2+√3+√7

_________________________________

Step by step explanation:

 \sf{⟹ \:   \frac{4}{2 +  \sqrt{3}  +  \sqrt{7} }}

now multiply the Numerator and denominator we get,

 \sf \red{⟹ \:  \frac{4(2 +  \sqrt{3}  +  \sqrt{7} }{(2 +  \sqrt{3}) +  \sqrt{7}(2 +  \sqrt{3}) -  \sqrt{3}   }}

 \sf \blue{⟹ \:  =  \frac{4(2 +  \sqrt{3}  -  \sqrt{7}) }{(2 +  \sqrt{3}  {}^{2} - ( \sqrt{7) {}^{2} }  }}

 \sf \pink{⟹ \:  =  \frac{4 + (2 +  \sqrt{3}  -  \sqrt{7}) }{ {2}^{2} + 2 \times 2 \times  \sqrt{3}  + ( \sqrt{3}) {}^{2}  - 7} }

 \sf \orange{⟹ \:  =  \frac{4(2 +  \sqrt{3}  -  \sqrt{7} }{4 + 4 \sqrt{3} + 3 - 7} }

 \sf \green{⟹ \:  =  \frac{4(2 +  \sqrt{3} -  \sqrt{7}  }{4 \sqrt{3}} }

 \sf \ red{⟹ \:  =  \frac{2 +  \sqrt{3} -  \sqrt{7}  }{ \sqrt{3}} }

 \sf \blue{⟹ \:  =  \frac{2 +  \sqrt{3}  -  \sqrt{7} }{3}}

____________________________

Now rationalize the denominator we get,

 \sf \pink{⟹ \:  =  \frac{(2 +  \sqrt{3} -  \sqrt{7} \times  \sqrt{3}   }{ \sqrt{3}  \times  \sqrt{3}} }

 \sf \green{⟹ \:  =  \frac{(2 \sqrt{3 + 3 -  \sqrt{21)} } }{3}}

 \sf \orange{⟹ \:  =  \frac{4}{2 +  \sqrt{3} +  \sqrt{7} = </p><p>    \frac{(2 \sqrt{3 + 3 -  \sqrt{21} } }{3} }  }

I hope it's help uh

Similar questions