Math, asked by JiveshYadav, 1 year ago

rationalise the denominator of 5+2√3/7+4√3

Answers

Answered by AbhinavaMahapatra
0
The denominator is rationalized

Answered by Salmonpanna2022
2

Step-by-step explanation:

 \bf \underline{Given-} \\

 \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  \\

 \bf \underline{What\: to\: do-} \\

To rationalise the denominator

 \bf \underline{Solution-} \\

\textsf{We have,}

 \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  \\  \\

\textsf{The denominator is 5+2√3. Multiplying the numerator and denominator by 7-4√3,}\\

\textsf{we get,}\\

 ⟹\frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  \times  \frac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} }  \\  \\

⟹ \frac{(5 + 2 \sqrt{3} )(7 - 4 \sqrt{3}) }{(7 + 4 \sqrt{3} )(7 - 4 \sqrt{3}) }  \\  \\

\textsf{⬤ Applying Algebraic Identity</p><p>(a+b)(a-b) = a² - b² to the denominator}\\

\textsf{We get,}\\

⟹ \frac{(5 + 2 \sqrt{3} )(7 - 4 \sqrt{3}) }{(7 {)}^{2} - (4 \sqrt{3} {)}^{2}   }  \\  \\

⟹ \frac{35 + 14 \sqrt{3} - 20 \sqrt{3} - 8 \sqrt{3 \times 3}   }{49 - 48}  \\  \\

⟹ \frac{35 + 14 \sqrt{3} - 20 \sqrt{3}  - 24 }{1}  \\  \\

⟹(35 - 24) - 6 \sqrt{3}  \\  \\

⟹11 - 6 \sqrt{3} \: \:  \:   \tt \red{ Ans}. \\  \\

 \bf \underline{Hence \:the \:denominator\: is\: rationalised.}\\

Similar questions