rationalise the denominator of √6/√3-√2
Answers
Answered by
83
multiply numerator and denominator by (√3+√2)
[√6(√3+√2)]/(√3-√2)(√3+√2)
=> (√18+√12)/(√3)²-(√2)²
( a+b)(a-b) => a²-b²
=> (√18+√12)/3-2
=> √18+√12
hope this helps
[√6(√3+√2)]/(√3-√2)(√3+√2)
=> (√18+√12)/(√3)²-(√2)²
( a+b)(a-b) => a²-b²
=> (√18+√12)/3-2
=> √18+√12
hope this helps
Answered by
208
Hey
here's your answer !!
√6 / ( √3-√2 )
= √6 ( √3 + √2 ) / ( √3-√2 )( √3 + √2 )
= ( √6 * √3 ) + ( √6 * √2 ) / ( √3 )² - ( √2 )²
= √18 + √12 / ( 3 -2 )
= 3√2 +2√3 ( ANSWER )
hope it helps !!
here's your answer !!
√6 / ( √3-√2 )
= √6 ( √3 + √2 ) / ( √3-√2 )( √3 + √2 )
= ( √6 * √3 ) + ( √6 * √2 ) / ( √3 )² - ( √2 )²
= √18 + √12 / ( 3 -2 )
= 3√2 +2√3 ( ANSWER )
hope it helps !!
Incredible29:
plz follow if u lyk my answer !!
Similar questions