Math, asked by lavya156, 4 months ago

rationalise the denominator of

 \frac{1}{ \sqrt{5 } +  \sqrt{2}  }

Answers

Answered by MagicalBeast
39

Given :

 \dfrac{1}{ \sqrt{5} +  \sqrt{2}  }

To find :

Rationalise given number

Identity used :

  • (a+b)(a-b) = a² - b²

Steps to follow :

For rationalization of denominator { given in form of (a+b) }

  • Multiply and divide the number by (a-b):

Solution :

 \sf \implies \:  \dfrac{1}{ \sqrt{5} +  \sqrt{2}  }  \times  \dfrac{ \sqrt{5} -  \sqrt{2}  }{ \sqrt{5} -  \sqrt{2}  } \\  \\  \sf \implies \:   \dfrac{  \sqrt{5}   -  \sqrt{2} }{ { (\sqrt{5} )}^{2}  -  {( \sqrt{2} )}^{2} }  \\  \\  \sf \implies \:  \dfrac{ \sqrt{5} -  \sqrt{2}  }{5 - 2}  \\  \\  \sf \implies \:  \dfrac{ \sqrt{5} -  \sqrt{2}  }{3}

ANSWER :

 \sf  \bold{ \dfrac{ \sqrt{5} -  \sqrt{2}  }{3} }

Similar questions